A probabilistic approach to the modeling of the relationship between fuzzy sets
暂无分享,去创建一个
[1] Hemanta K. Baruah,et al. Towards Forming A Field Of Fuzzy Sets , 2011 .
[2] Robert LIN,et al. NOTE ON FUZZY SETS , 2014 .
[3] M. Navara,et al. Uncertainty and Dependence in Classical and Quantum Logic — The Role of Triangular Norms , 1999 .
[4] Henri Prade,et al. Fuzzy sets and probability: misunderstandings, bridges and gaps , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.
[5] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[6] M. J. Frank. On the simultaneous associativity ofF(x, y) andx+y−F(x, y) , 1978 .
[7] M. Fréchet. Généralisation du théorème des probabilités totales , 1935 .
[8] Romano Scozzafava,et al. Conditional probability, fuzzy sets, and possibility: a unifying view , 2004, Fuzzy Sets Syst..
[9] A. Caramazza,et al. A Fuzzy Set Approach to Modifiers and Vagueness in Natural Language , 2005 .
[10] Radko Mesiar,et al. Triangular Norms , 2000, Trends in Logic.
[11] Jyoti Neog Tridiv,et al. Complement of an Extended Fuzzy Set , 2011 .
[12] Giuseppe De Pietro,et al. From Likelihood Uncertainty to Fuzziness: A Possibility-Based Approach for Building Clinical DSSs , 2012, HAIS.
[13] Vladik Kreinovich,et al. "And"- and "Or"-operations for "double", "triple", etc. fuzzy sets , 2014, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
[14] Peter C. Cheeseman,et al. Probabilistic vs. Fuzzy Reasoning , 1985, UAI.
[15] M. J. Frank. On the simultaneous associativity of F(x, y) and x+y-F(x, y). (Short Communication). , 1978 .
[16] M. J. Frank. On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .
[17] D. Dubois,et al. Fundamentals of fuzzy sets , 2000 .
[18] R. Nelsen. An Introduction to Copulas (Springer Series in Statistics) , 2006 .
[19] Franco Montagna,et al. The $L\Pi$ and $L\Pi\frac{1}{2}$ logics: two complete fuzzy systems joining Łukasiewicz and Product Logics , 2001, Arch. Math. Log..