Fundamental solutions to electrical circuits of non-integer order via fractional derivatives with and without singular kernels

Abstract.This paper deals with constructing analytical solutions of electrical circuits RC and RLC of non-integer order involving fractional time derivatives of type Liouville-Caputo, Caputo-Fabrizio-Caputo, Atangana-Baleanu-Caputo, Atangana-Koca-Caputo and fractional conformable derivative in the Liouville-Caputo sense. These fractional derivatives involve power law, exponential decay or Mittag-Leffler function. For each equation with order $ \alpha \in (0;1]$α∈(0;1], we presented the exact solution using the properties of Laplace transform operator together with the convolution theorem. Numerical simulations are presented for evaluating the difference between these operators. Based on the power-law, exponential-decay or Mittag-Leffler function new behaviors for the voltage and charge were obtained.

[1]  W. K. Zahra,et al.  Solutions of fractional order electrical circuits via Laplace transform and nonstandard finite difference method , 2017 .

[2]  Badr Saad T. Alkahtani,et al.  Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel , 2015 .

[3]  A. E. Çalık,et al.  Investigation of electrical RC circuit within the framework of fractional calculus , 2015 .

[4]  Tadeusz Kaczorek,et al.  Fractional descriptor continuous–time linear systems described by the Caputo–Fabrizio derivative , 2016, Int. J. Appl. Math. Comput. Sci..

[5]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[6]  Tadeusz Kaczorek,et al.  Singular fractional linear systems and electrical circuits , 2011, Int. J. Appl. Math. Comput. Sci..

[7]  Hari M. Srivastava,et al.  Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations , 2017, Comput. Math. Appl..

[8]  Hari M. Srivastava,et al.  A new computational approach for solving nonlinear local fractional PDEs , 2017, J. Comput. Appl. Math..

[9]  Sophie Hallstedt,et al.  A model-based approach for sustainability and value assessment in the aerospace value chain , 2015 .

[10]  J. F. Gómez‐Aguilar,et al.  Fractional mechanical oscillators , 2012 .

[11]  Muhammad Aslam Uqaili,et al.  A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives , 2018 .

[12]  R. F. Escobar-Jiménez,et al.  Electrical circuits described by a fractional derivative with regular Kernel , 2016 .

[13]  Abdon Atangana,et al.  New direction in fractional differentiation , 2017 .

[14]  Yingxin Guo SOLVABILITY FOR A NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION , 2009 .

[15]  J. Rosales,et al.  RLC electrical circuit of non-integer order , 2013 .

[16]  A. Atangana,et al.  New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model , 2016, 1602.03408.

[17]  Dumitru Baleanu,et al.  On a new class of fractional operators , 2017, Advances in Difference Equations.

[18]  Miguel Angel Moreles,et al.  Mathematical modelling of fractional order circuit elements and bioimpedance applications , 2017, Commun. Nonlinear Sci. Numer. Simul..

[19]  M. Sababheh,et al.  A new definition of fractional derivative , 2014, J. Comput. Appl. Math..

[20]  Yingxin Guo NONTRIVIAL SOLUTIONS FOR BOUNDARY-VALUE PROBLEMS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS , 2010 .

[21]  Abdon Atangana,et al.  Electrical circuits RC, LC, and RL described by Atangana–Baleanu fractional derivatives , 2017, Int. J. Circuit Theory Appl..

[22]  HongGuang Sun,et al.  A variable-order fractal derivative model for anomalous diffusion , 2017 .

[23]  J. F. Aguilar Behavior characteristics of a cap-resistor, memcapacitor, and a memristor from the response obtained of RC and RL electrical circuits described by fractional differential equations , 2016 .

[24]  Xiao-Jun Yang,et al.  General fractional calculus operators containing the generalized Mittag-Leffler functions applied to anomalous relaxation , 2017 .

[25]  Ahmed Alsaedi,et al.  Fractional electrical circuits , 2015 .

[26]  Syed Tauseef Mohyud-Din,et al.  On linear viscoelasticity within general fractional derivatives without singular kernel , 2017 .

[27]  Carl F. Lorenzo,et al.  Energy storage and loss in fractional-order circuit elements , 2015, IET Circuits Devices Syst..

[28]  Feng Gao,et al.  On a fractal LC-electric circuit modeled by local fractional calculus , 2017, Commun. Nonlinear Sci. Numer. Simul..

[29]  Abdon Atangana,et al.  Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel , 2015 .

[30]  Jordan Hristov,et al.  Electrical Circuits of Non-integer Order: Introduction to an Emerging Interdisciplinary Area with Examples , 2018 .