Frugal IV alternatives to identify the parameter for an endogenous regressor

A review of the econometric literature on instrumental variables (IV) estimation shows that the performance of traditional IV estimation relies critically on the quality of the instruments. We discuss three different approaches that do not require the availability of observed instrumental variables: the ‘Higher Moments’ (HM) estimator, the ‘Identification trough Heteroscedasticity’ (IH) estimator, and the ‘Latent Instrumental Variable’ (LIV) approach. These methods attempt to identify the regression parameters not through observed instruments but by using other information that enables identifiability. The performance of these methods is illustrated on simulated and empirical data. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  Jonathan H. Wright,et al.  A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments , 2002 .

[2]  David Card The Causal Effect of Education on Learning , 1999 .

[3]  Pradeep K. Chintagunta,et al.  Endogeneity and Heterogeneity in a Probit Demand Model: Estimation Using Aggregate Data , 2001 .

[4]  Wayne A. Fuller,et al.  Some Properties of a Modification of the Limited Information Estimator , 1977 .

[5]  Aviv Nevo A Practitioner's Guide to Estimation of Random‐Coefficients Logit Models of Demand , 2000 .

[6]  David A. Jaeger,et al.  Problems with Instrumental Variables Estimation when the Correlation between the Instruments and the Endogenous Explanatory Variable is Weak , 1995 .

[7]  J. Angrist,et al.  Jackknife Instrumental Variables Estimation , 1995 .

[8]  Harald J. van Heerde,et al.  Similarity-Based Spatial Methods to Estimate Shelf Space Elasticities , 2004 .

[9]  Vijay Mahajan,et al.  Unobserved Retailer Behavior in Multimarket Data: Joint Spatial Dependence in Market Shares and Promotion Variables , 2001 .

[10]  Paul A. Bekker,et al.  ALTERNATIVE APPROXIMATIONS TO THE DISTRIBUTIONS OF INSTRUMENTAL VARIABLE ESTIMATORS , 1994 .

[11]  Stephen G. Donald,et al.  Choosing the Number of Instruments , 2001 .

[12]  A. Wald The Fitting of Straight Lines if Both Variables are Subject to Error , 1940 .

[13]  Arthur Lewbel,et al.  Constructing Instruments for Regressions with Measurement Error when no Additional Data are Available, with an Application to Patents and R&D , 1997 .

[14]  Roberto Rigobon,et al.  Identification Through Heteroskedasticity , 2003, Review of Economics and Statistics.

[15]  P. Ebbes Latent instrumental variables, a new approach to solve for endogeneity , 2004 .

[16]  K. Sudhir,et al.  Competitive Pricing Behavior in the Auto Market: A Structural Analysis , 2001 .

[17]  Michel Wedel,et al.  Marketing and econometrics: Editors' introduction , 1998 .

[18]  K. R. Kadiyala Testing for the Independence of Regression Disturbances , 1970 .

[19]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[20]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[21]  Jeffrey M. Wooldridge,et al.  Solutions Manual and Supplementary Materials for Econometric Analysis of Cross Section and Panel Data , 2003 .

[22]  Greg M. Allenby,et al.  Bayesian Analysis of Simultaneous Demand and Supply , 2003 .

[23]  Richard Startz,et al.  Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator , 1988 .

[24]  Michel Wedel,et al.  Solving and Testing for Regressor-Error (in)Dependence When no Instrumental Variables are Available: With New Evidence for the Effect of Education on Income , 2005 .

[25]  Jerry A. Hausman,et al.  Weak Instruments: Diagnosis and Cures in Empirical Econometrics , 2003 .

[26]  Paul A. Ruud,et al.  An Introduction to Classical Econometric Theory , 2000 .

[27]  David J. Hand,et al.  A Handbook of Small Data Sets , 1993 .

[28]  Aviv Nevo Measuring Market Power in the Ready-to-Eat Cereal Industry , 1998 .

[29]  J. Stock,et al.  Instrumental Variables Regression with Weak Instruments , 1994 .

[30]  Marno Verbeek,et al.  A Guide to Modern Econometrics , 2000 .

[31]  Eric Zivot,et al.  Bayesian and Classical Approaches to Instrumental Variables Regression , 2003 .

[32]  Vincent Hogan,et al.  Using Heteroscedasticity to Estimate the Returns to Education , 2002 .

[33]  A. Buse,et al.  The Bias of Instrumental Variable Estimators , 1992 .

[34]  Toni M. Whited,et al.  TWO-STEP GMM ESTIMATION OF THE ERRORS-IN-VARIABLES MODEL USING HIGH-ORDER MOMENTS , 2002, Econometric Theory.

[35]  J. M. Villas-Boas,et al.  Endogeneity in Brand Choice Models , 1999 .

[36]  Michael P. Murray,et al.  Instrumental Variables , 2011, International Encyclopedia of Statistical Science.

[37]  A. Madansky The fitting of straight lines when both variables are subject to error , 1959 .

[38]  Frank Kleibergen,et al.  Pivotal statistics for testing structural parameters in instrumental variables regression , 2002 .

[39]  Steven T. Berry,et al.  Automobile Prices in Market Equilibrium , 1995 .

[40]  J. Sargan THE ESTIMATION OF ECONOMIC RELATIONSHIPS USING INSTRUMENTAL VARIABLES , 1958 .

[41]  David Card Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems , 2000 .

[42]  M. Arellano,et al.  Sargan's Intrumental Variables Estimation and the Generalized Method of Moments , 2002 .

[43]  H. White Asymptotic theory for econometricians , 1985 .

[44]  J. Stock,et al.  A Survey of Weak Instruments and Weak Identification in GMM , 2002 .

[45]  J. MacKinnon,et al.  Estimation and inference in econometrics , 1994 .

[46]  T. W. Anderson,et al.  Estimation of the Parameters of a Single Equation in a Complete System of Stochastic Equations , 1949 .

[47]  T. W. Anderson,et al.  The Asymptotic Properties of Estimates of the Parameters of a Single Equation in a Complete System of Stochastic Equations , 1950 .

[48]  J. Stock,et al.  Instrumental Variables Regression with Weak Instruments , 1994 .

[49]  Jinyong Hahn,et al.  A New Specification Test for the Validity of Instrumental Variables , 2000 .

[50]  M. Dagenais,et al.  Higher moment estimators for linear regression models with errors in the variables , 1997 .

[51]  U. Böckenholt,et al.  Regressor and random‐effects dependencies in multilevel models , 2004 .