Residual stresses due to foreign object damage in laser-shock peened aerofoils: Simulation and measurement

[1]  J. Tong,et al.  Fatigue crack growth in laser-shock-peened Ti–6Al–4V aerofoil specimens due to foreign object damage , 2014 .

[2]  Xuemei Wang,et al.  Validation of Johnson-Cook plasticity and damage model using impact experiment , 2013 .

[3]  P. Withers Synchrotron X-ray Diffraction , 2013 .

[4]  M. Preuss,et al.  Residual stresses caused by head-on and 45 foreign object damage for a laser shock peened Ti?6Al?4V alloy aerofoil , 2013 .

[5]  Philip J. Withers,et al.  Residual stress fields after FOD impact on flat and aerofoil-shaped leading edges , 2012 .

[6]  Robert O. Ritchie,et al.  On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550 C , 2012 .

[7]  S. Zabeen Fatigue crack growth in complex residual stress fields due to surface treatment and foreign object damage under simulated flight cycles , 2012 .

[8]  D. Agard,et al.  Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.

[9]  Jie Tong,et al.  Characterisation of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti–6Al–4V aerofoil specimens , 2011 .

[10]  Fu-Zhen Xuan,et al.  Improvement of fatigue life of Ti–6Al–4V alloy by laser shock peening , 2010 .

[11]  P. Withers,et al.  Engineering the residual stress state and microstructure of stainless steel with mechanical surface treatments , 2010 .

[12]  Philip J. Withers,et al.  Methods for obtaining the strain‐free lattice parameter when using diffraction to determine residual stress , 2007 .

[13]  A. Korsunsky,et al.  Evaluation and analysis of residual stresses due to foreign object damage , 2007 .

[14]  Philip J. Withers,et al.  Effects of fatigue and fretting on residual stresses introduced by laser shock peening , 2006 .

[15]  H. Meyer,et al.  A Modified Zerilli-Armstrong Constitutive Model Describing the Strength and Localizing Behavior of Ti-6A1-4V , 2006 .

[16]  Xi Chen Foreign object damage on the leading edge of a thin blade , 2005 .

[17]  Yeong Sung Suh,et al.  Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys , 2004 .

[18]  M. Elbestawi,et al.  Three-dimensional elastoplastic finite element model for residual stresses in the shot peening process , 2004 .

[19]  David Nowell,et al.  Prediction of fatigue performance in gas turbine blades after foreign object damage , 2003 .

[20]  S. R. Thompson,et al.  High cycle fatigue limit stresses for airfoils subjected to foreign object damage , 2003 .

[21]  M. R. Hill,et al.  Measurement of Thickness-Average Residual Stress Near the Edge of a Thin Laser Peened Strip , 2003 .

[22]  Y. Mai,et al.  Laser shock processing and its effects on microstructure and properties of metal alloys: a review , 2002 .

[23]  G Kay,et al.  Failure Modeling of Titanium-6Al-4V and 2024-T3 Aluminum with the Johnson-Cook Material Model , 2002 .

[24]  S. R. Thompson,et al.  Effects of ballistic impact damage on fatigue crack initiation in Ti–6Al–4V simulated engine blades , 2002 .

[25]  H. Meyer,et al.  Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration , 2001 .

[26]  Brad Lee Boyce,et al.  The residual stress state due to a spherical hard-body impact , 2001 .

[27]  Theodore Nicholas,et al.  Influence of foreign object damage (FOD) on the fatigue life of simulated Ti-6Al-4V airfoils , 2001 .

[28]  Yung-Chiun Her,et al.  Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes , 2001 .

[29]  G. A. Webster,et al.  Fracture mechanics analysis of a crack in a residual stress field , 2000 .

[30]  R. Ritchie,et al.  Influence of foreign-object damage on crack initiation and early crack growth during high-cycle fatigue of Ti–6Al–4V , 2000 .

[31]  Lloyd A. Hackel,et al.  Surface prestressing to improve fatigue strength of components by laser shot peening , 2000 .

[32]  R. Ritchie,et al.  Role of foreign-object damage on thresholds for high-cycle fatigue in Ti-6Al-4V , 2000 .

[33]  S. R. Thompson,et al.  Fatigue crack nucleation and growth rate behavior of laser shock peened titanium , 1999 .

[34]  Brad L. Boyce,et al.  Thresholds for high-cycle fatigue in a turbine engine Ti–6Al–4V alloy , 1999 .

[35]  R. Fabbro,et al.  Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour , 1996 .

[36]  Allan H. Clauer,et al.  Laser Shock Processing Increases the Fatigue Life of Metal Parts , 1991 .

[37]  R. S. Bertke,et al.  Impact damage on titanium leading edges from small hard objects , 1980 .

[38]  D. Lesuer,et al.  EXPERIMENTAL INVESTIGATIONS OF MATERIAL MODELS FOR TI-6A1-4V TITANIUM AND 2024-T3 ALUMINUM. , 2000 .

[39]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[40]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .