Magnetic activity of F stars observed by Kepler

Context. The study of stellar activity is important because it can provide new constraints for dynamo models when combined with surface rotation rates and the depth of the convection zone. We know that the dynamo mechanism, which is believed to be the main process that rules the magnetic cycle of solar-like stars, results from the interaction between (differential) rotation, convection, and magnetic field. The Kepler mission has already been collecting data for a large number of stars during four years allowing us to investigate magnetic stellar cycles.Aims. We investigated the Kepler light curves to look for magnetic activity or even hints of magnetic activity cycles. Based on the photometric data we also looked for new magnetic indexes to characterise the magnetic activity of the stars.Methods. We selected a sample of 22 solar-like F stars that have a rotation period shorter than 12 days. We performed a time-frequency analysis using the Morlet wavelet yielding a magnetic proxy for our sample of stars. We computed the magnetic index Sph as the standard deviation of the whole time series and the index ⟨ Sph ⟩, which is the mean of standard deviations measured in subseries of length five times the rotation period of the star. We defined new indicators, such as the contrast between high and low activity, to take into account the fact that complete magnetic cycles are not observed for all the stars. We also inferred the Rossby number of the stars and studied their stellar background.Results. This analysis shows different types of behaviour in the 22 F stars. Two stars show behaviour very similar to magnetic activity cycles. Five stars show long-lived spots or active regions suggesting the existence of active longitudes. Two stars in our sample seem to have a decreasing or increasing trend in the temporal variation of the magnetic proxies. Finally, the last group of stars shows magnetic activity (with the presence of spots) but no sign of cycle.

[1]  T. Appourchaux,et al.  ASTEROSEISMIC FUNDAMENTAL PROPERTIES OF SOLAR-TYPE STARS OBSERVED BY THE NASA KEPLER MISSION , 2013, 1310.4001.

[2]  F. Grundahl,et al.  Sounding stellar cycles with Kepler – II. Ground-based observations , 2013, 1306.3306.

[3]  M. Miesch,et al.  A THEORY ON THE CONVECTIVE ORIGINS OF ACTIVE LONGITUDES ON SOLAR-LIKE STARS , 2013, 1305.1904.

[4]  Ansgar Reiners,et al.  COMPARISON OF KEPLER PHOTOMETRIC VARIABILITY WITH THE SUN ON DIFFERENT TIMESCALES , 2013 .

[5]  T. Metcalfe,et al.  ιHorologi, the first coronal activity cycle in a young solar-like star , 2013, 1305.1132.

[6]  T. Mazeh,et al.  Measuring the rotation period distribution of field M dwarfs with Kepler , 2013, 1303.6787.

[7]  K. Kinemuchi,et al.  OBSERVATIONS OF INTENSITY FLUCTUATIONS ATTRIBUTED TO GRANULATION AND FACULAE ON SUN-LIKE STARS FROM THE KEPLER MISSION , 2013, 1302.5563.

[8]  R. Simoniello,et al.  Towards solar activity maximum 24 as seen by GOLF and VIRGO/SPM instruments , 2013, 1301.6930.

[9]  B. Mosser,et al.  Asymptotic and measured large frequency separations , 2012, 1212.1687.

[10]  S. Mathur,et al.  Constraining magnetic-activity modulations in three solar-like stars observed by CoRoT and NARVAL , 2012, 1212.0630.

[11]  R. Simoniello,et al.  THE QUASI-BIENNIAL PERIODICITY AS A WINDOW ON THE SOLAR MAGNETIC DYNAMO CONFIGURATION , 2012, 1210.6796.

[12]  D. Soderblom,et al.  MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR ϵ ERIDANI , 2012, 1212.4425.

[13]  H. M. Antia,et al.  Acoustic glitches in solar-type stars from Kepler , 2012 .

[14]  P. Tenenbaum,et al.  VERIFYING ASTEROSEISMICALLY DETERMINED PARAMETERS OF KEPLER STARS USING HIPPARCOS PARALLAXES: SELF-CONSISTENT STELLAR PROPERTIES AND DISTANCES , 2012, 1208.6294.

[15]  M. Miesch,et al.  CONVECTION AND DIFFERENTIAL ROTATION IN F-TYPE STARS , 2012 .

[16]  J. Schou,et al.  SEISMIC EVIDENCE FOR A RAPIDLY ROTATING CORE IN A LOWER-GIANT-BRANCH STAR OBSERVED WITH KEPLER , 2012, 1206.3312.

[17]  P. Quirion,et al.  Accurate fundamental parameters and detailed abundance patterns from spectroscopy of 93 solar-type Kepler targets , 2012 .

[18]  T. Appourchaux,et al.  Oscillation mode frequencies of 61 main-sequence and subgiant stars observed by Kepler , 2012, 1204.3147.

[19]  Martin C. Stumpe,et al.  Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction , 2012, 1203.1383.

[20]  Jeffery J. Kolodziejczak,et al.  Kepler Presearch Data Conditioning I—Architecture and Algorithms for Error Correction in Kepler Light Curves , 2012, 1203.1382.

[21]  T. Appourchaux,et al.  A UNIFORM ASTEROSEISMIC ANALYSIS OF 22 SOLAR-TYPE STARS OBSERVED BY KEPLER , 2012, 1202.2844.

[22]  C. Karoff Temporal variations in the acoustic signal from faculae , 2012, 1201.2539.

[23]  H. M. Antia,et al.  Oscillation mode linewidths of main-sequence and subgiant stars observed by Kepler , 2011, 1112.3295.

[24]  Paul G. Beck,et al.  Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes , 2011, Nature.

[25]  Travis S. Metcalfe,et al.  A REVISED EFFECTIVE TEMPERATURE SCALE FOR THE KEPLER INPUT CATALOG , 2011, 1110.4456.

[26]  J. De Ridder,et al.  TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA , 2011, 1109.3460.

[27]  K. Kinemuchi,et al.  GRANULATION IN RED GIANTS: OBSERVATIONS BY THE KEPLER MISSION AND THREE-DIMENSIONAL CONVECTION SIMULATIONS , 2011, 1109.1194.

[28]  P. Gaulme,et al.  Asteroseismology from multi-month Kepler photometry: the evolved Sun-like stars KIC 10273246 and KIC 10920273 , 2011, 1108.3807.

[29]  Antonino Francesco Lanza,et al.  Deriving the radial-velocity variations induced by stellar activity from high-precision photometry Test on HD 189733 with simultaneous MOST/SOPHIE data , 2011, 1107.4864.

[30]  K. Biazzo,et al.  Magnetic activity and differential rotation in the very young star KIC 8429280 , 2011, 1106.4928.

[31]  F. Baudin,et al.  Accurate p-mode measurements of the G0V metal-rich CoRoT target HD 52265 , 2011, 1105.3551.

[32]  S. Mathur,et al.  About the p-mode frequency shifts in HD 49933 , 2011, 1104.5654.

[33]  T. Bedding,et al.  Amplitudes of solar-like oscillations: a new scaling relation , 2011, 1104.1659.

[34]  S. D. Kawaler,et al.  EVIDENCE FOR THE IMPACT OF STELLAR ACTIVITY ON THE DETECTABILITY OF SOLAR-LIKE OSCILLATIONS OBSERVED BY KEPLER , 2011, 1103.5570.

[35]  P. Gaulme,et al.  SOLAR-LIKE OSCILLATIONS IN KIC 11395018 AND KIC 11234888 FROM 8 MONTHS OF KEPLER DATA , 2011, 1103.4085.

[36]  R. Gilliland,et al.  Preparation of Kepler lightcurves for asteroseismic analyses , 2011, 1103.0382.

[37]  S. Mathur,et al.  Effect of line-of-sight inclinations on the observation of solar activity cycle: Lessons for CoRoT & Kepler , 2011 .

[38]  D. Soderblom,et al.  DISCOVERY OF A 1.6 YEAR MAGNETIC ACTIVITY CYCLE IN THE EXOPLANET HOST STAR ι HOROLOGII , 2010, 1009.5399.

[39]  Travis S. Metcalfe,et al.  CoRoT Reveals a Magnetic Activity Cycle in a Sun-Like Star , 2010, Science.

[40]  L. Walkowicz,et al.  PHOTOMETRIC VARIABILITY IN KEPLER TARGET STARS. II. AN OVERVIEW OF AMPLITUDE, PERIODICITY, AND ROTATION IN FIRST QUARTER DATA , 2010, 1008.1092.

[41]  W. Chaplin,et al.  A SEISMIC SIGNATURE OF A SECOND DYNAMO? , 2010, 1006.4305.

[42]  P. Gaulme,et al.  The solar-like CoRoT ? target HD 170987: spectroscopic and seismic observations , 2010, 1004.4891.

[43]  M. Martic,et al.  A MULTI-SITE CAMPAIGN TO MEASURE SOLAR-LIKE OSCILLATIONS IN PROCYON. II. MODE FREQUENCIES , 2010, 1003.0052.

[44]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[45]  Jeffrey E. Cleve,et al.  Kepler Data Release 3 Notes , 2010 .

[46]  M. R. Haas,et al.  INITIAL CHARACTERISTICS OF KEPLER LONG CADENCE DATA FOR DETECTING TRANSITING PLANETS , 2010, 1001.0256.

[47]  P. Quirion,et al.  Determining global parameters of the oscillations of solar-like stars , 2009, 0912.3367.

[48]  D. A. Caldwell,et al.  INITIAL CHARACTERISTICS OF KEPLER SHORT CADENCE DATA , 2009, 1001.0142.

[49]  Antonino Francesco Lanza,et al.  Short-lived spots in solar-like stars as observed by CoRoT , 2009, 0908.2355.

[50]  C. Moutou,et al.  Magnetic cycles of the planet-hosting star τ Bootis – II. A second magnetic polarity reversal , 2009, 0906.4515.

[51]  J. Christensen-Dalsgaard,et al.  A STELLAR MODEL-FITTING PIPELINE FOR ASTEROSEISMIC DATA FROM THE KEPLER MISSION , 2009, 0903.0616.

[52]  K. Strassmeier Starspots: signatures of stellar magnetic activity , 2008, Proceedings of the International Astronomical Union.

[53]  N. Weiss,et al.  Sunspots and Starspots , 2008 .

[54]  X. Liang,et al.  Rectification of the Bias in the Wavelet Power Spectrum , 2007 .

[55]  T. Metcalfe,et al.  Asteroseismic signatures of stellar magnetic activity cycles , 2007, 0704.1606.

[56]  W. Soon,et al.  Patterns of Photometric and Chromospheric Variation among Sun-like Stars: A 20 Year Perspective , 2007, astro-ph/0703408.

[57]  E. Böhm-Vitense Chromospheric Activity in G and K Main-Sequence Stars, and What It Tells Us about Stellar Dynamos , 2007 .

[58]  D. Sokoloff,et al.  Active longitudes, nonaxisymmetric dynamos and phase mixing , 2006 .

[59]  S. Saar,et al.  A new look at dynamo cycle amplitudes , 2002, astro-ph/0207392.

[60]  K. L. Harvey,et al.  A Picture of Solar Minimum and the Onset of Solar Cycle 23. I. Global Magnetic Field Evolution , 2000 .

[61]  S. Saar,et al.  Time Evolution of the Magnetic Activity Cycle Period , 1998 .

[62]  C. Torrence,et al.  A Practical Guide to Wavelet Analysis. , 1998 .

[63]  S. M. Chitre,et al.  Differential Rotation and Dynamics of the Solar Interior , 1996, Science.

[64]  Richard C. Willson,et al.  VIRGO: Experiment for helioseismology and solar irradiance monitoring , 1995 .

[65]  K. Libbrecht,et al.  Solar-cycle effects on solar oscillation frequencies , 1990, Nature.

[66]  S. Baliunas,et al.  Rotation, convection, and magnetic activity in lower main-sequence stars , 1984 .

[67]  O. C. Wilson,et al.  Chromospheric variations in main-sequence stars , 1978 .