New expansions of numerical eigenvalues for -Δu = λρu by nonconforming elements

The paper explores new expansions of the eigenvalues for -Δu = Λpu in S with Dirichlet boundary conditions by the bilinear element (denoted Q 1 ) and three nonconforming elements, the rotated bilinear element (denoted Q 1 rot ), the extension of Q 1 rot (denoted EQ 1 rot ) and Wilson's elements. The expansions indicate that Q 1 and Q 1 rot provide upper bounds of the eigenvalues, and that EQ 1 rot and Wilson's elements provide lower bounds of the eigenvalues. By extrapolation, the O(h 4 ) convergence rate can be obtained, where h is the maximal boundary length of uniform rectangles. Numerical experiments are carried out to verify the theoretical analysis made.

[1]  Bo Li,et al.  Superconvergence analysis and error expansion for the Wilson nonconforming finite element , 1994 .

[2]  B. Mercier,et al.  Eigenvalue approximation by mixed and hybrid methods , 1981 .

[3]  Zi-Cai Li,et al.  Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities , 1998 .

[4]  J. Bramble,et al.  Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .

[5]  Junhu,et al.  NONCONFORMING QUADRILATERAL ROTATED Q1 ELEMENT FOR REISSNER-MINDLIN PLATE , 2003 .

[6]  Rolf Rannacher,et al.  Nonconforming finite element methods for eigenvalue problems in linear plate theory , 1979 .

[7]  I. Babuska,et al.  Estimates for the errors in Eigenvalue and Eigenvector approximation by Galerkinmethods, with particular attention to the case of multiple Eigenvalues , 1987 .

[8]  George E. Forsythe,et al.  Asymptotic lower bounds for the frequencies of certain polygonal membranes. , 1954 .

[9]  H. Weinberger Variational Methods for Eigenvalue Approximation , 1974 .

[10]  Yang,et al.  A POSTERIORI ERROR ESTIMATES IN ADINI FINITE ELEMENT FOR EIGENVALUE PROBLEMS , 2000 .

[11]  Richard S. Varga,et al.  Higher order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems: 2. Improved error bounds for eigenfunctions , 1972 .

[12]  William G. Kolata,et al.  Approximation in variationally posed eigenvalue problems , 1978 .

[13]  R. Lehmann Computable Error Bounds in the Finite-Element Method , 1986 .

[14]  Lin Qun,et al.  Fourth order eigenvalue approximation by extrapolation on domains with reentrant corners , 1990 .

[15]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[16]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[17]  R. Rannacher,et al.  Asymptotic error expansion and Richardson extranpolation for linear finite elements , 1986 .

[18]  Françoise Chatelin,et al.  Convergence of Approximation Methods to Compute Eigenelements of Linear Operations , 1973 .

[19]  Qun Lin,et al.  Finite element methods : accuracy and improvement = 有限元方法 : 精度及其改善 , 2006 .