Learning Parameters in Entity Relationship Graphs from Ranking Preferences

Semi-structured entity-relation (ER) data graphs have diverse node and edge types representing entities (paper, person, company) and relations (wrote, works for). In addition, nodes contain text snippets. Extending from vector-space information retrieval, we wish to automatically learn ranking function for searching such typed graphs. User input is in the form of a partial preference order between pairs of nodes, associated with a query. We present a unified model for ranking in ER graphs, and propose an algorithm to learn the parameters of the model. Experiments with carefully-controlled synthetic data as well as real data (garnered using CiteSeer, DBLP and Google Scholar) show that our algorithm can satisfy training preferences and generalize to test preferences, and estimate meaningful model parameters that represent the relative importance of ER types.

[1]  Editors , 1986, Brain Research Bulletin.

[2]  W. Bruce Croft,et al.  Evaluation of an inference network-based retrieval model , 1991, TOIS.

[3]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[4]  M. KleinbergJon Authoritative sources in a hyperlinked environment , 1999 .

[5]  David A. Cohn,et al.  Creating customized authority lists , 1999, ICML 1999.

[6]  Klaus Obermayer,et al.  Support vector learning for ordinal regression , 1999 .

[7]  Berthier A. Ribeiro-Neto,et al.  Link-based and content-based evidential information in a belief network model , 2000, SIGIR '00.

[8]  David A. Cohn,et al.  The Missing Link - A Probabilistic Model of Document Content and Hypertext Connectivity , 2000, NIPS.

[9]  Andrew McCallum,et al.  Learning to Create Customized Authority Lists , 2000, ICML.

[10]  Matthew Richardson,et al.  The Intelligent surfer: Probabilistic Combination of Link and Content Information in PageRank , 2001, NIPS.

[11]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[12]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[13]  S. Sudarshan,et al.  Keyword searching and browsing in databases using BANKS , 2002, Proceedings 18th International Conference on Data Engineering.

[14]  Ah Chung Tsoi,et al.  Adaptive ranking of web pages , 2003, WWW '03.

[15]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[16]  Lin Guo XRANK : Ranked Keyword Search over XML Documents , 2003 .

[17]  Christos Faloutsos,et al.  R-MAT: A Recursive Model for Graph Mining , 2004, SDM.

[18]  Vagelis Hristidis,et al.  ObjectRank: Authority-Based Keyword Search in Databases , 2004, VLDB.

[19]  Marco Gori,et al.  Learning Web Page Scores by Error Back-Propagation , 2005, IJCAI.

[20]  Wei-Ying Ma,et al.  Object-level ranking: bringing order to Web objects , 2005, WWW '05.

[21]  Andrew Trotman,et al.  Learning to Rank , 2005, Information Retrieval.