Energy-based models for environmental biotechnology.

Environmental biotechnology is evolving. Current process objectives include the production of chemicals and/or energy carriers (biofuels) in addition to the traditional objective of removing pollutants from waste. To maximise product yields and minimise biomass production, future processes will rely on anaerobic microbial communities. Anaerobic processes are characterised by small Gibbs energy changes in the reactions catalysed, and this provides clear thermodynamic process boundaries. Here, a Gibbs-energy-based methodology is proposed for mathematical modelling of energy-limited anaerobic ecosystems. This methodology provides a basis for the description of microbial activities as a function of environmental factors, which will allow enhanced catalysis of specific reactions of interest for process development.

[1]  Robbert Kleerebezem,et al.  Influence of the pH on (open) mixed culture fermentation of glucose: A chemostat study , 2007, Biotechnology and bioengineering.

[2]  Dan Jones Evolutionary theory: Personal effects , 2005, Nature.

[3]  B. Schink Energetics of syntrophic cooperation in methanogenic degradation , 1997, Microbiology and molecular biology reviews : MMBR.

[4]  D. Lovley Microbial fuel cells: novel microbial physiologies and engineering approaches. , 2006, Current opinion in biotechnology.

[5]  J. G. Kuenen,et al.  Anaerobic ammonium oxidation by anammox bacteria in the Black Sea , 2003, Nature.

[6]  H. Pilcher Microbiology: Pipe dreams , 2005, Nature.

[7]  J. Heijnen,et al.  Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. , 2003, Metabolic engineering.

[8]  Peter G. Brewer,et al.  Methane-consuming archaebacteria in marine sediments , 1999, Nature.

[9]  Michael C. Flickinger,et al.  Encyclopedia of bioprocess technology : fermentation, biocatalysis, and bioseparation , 1999 .

[10]  F. Mosey Mathematical Modelling of the Anaerobic Digestion Process: Regulatory Mechanisms for the Formation of Short-Chain Volatile Acids from Glucose , 1983 .

[11]  Daniel B. Oerther,et al.  A vista for microbial ecology and environmental biotechnology. , 2006, Environmental science & technology.

[12]  Bruce E Rittmann,et al.  Microbial ecology to manage processes in environmental biotechnology. , 2006, Trends in biotechnology.

[13]  J. Heijnen,et al.  Bioenergetics of Microbial Growth , 2010 .

[14]  L. T. Angenent,et al.  Production of bioenergy and biochemicals from industrial and agricultural wastewater. , 2004, Trends in biotechnology.

[15]  J. Heijnen,et al.  A metabolic network stoichiometry analysis of microbial growth and product formation , 1995, Biotechnology and bioengineering.

[16]  F. Karadagli,et al.  Thermodynamic and kinetic analysis of the H2 threshold for Methanobacterium bryantii M.o.H , 2007, Biodegradation.

[17]  Irini Angelidaki,et al.  Anaerobic digestion model No. 1 (ADM1) , 2002 .

[18]  Mike S. M. Jetten,et al.  A microbial consortium couples anaerobic methane oxidation to denitrification , 2006, Nature.

[19]  H. Westerhoff Yes. Kinetics alone are impracticable , 1982 .

[20]  Mogens Henze,et al.  Activated sludge models ASM1, ASM2, ASM2d and ASM3 , 2015 .

[21]  M. V. van Loosdrecht,et al.  Mixed culture biotechnology for bioenergy production. , 2007, Current opinion in biotechnology.

[22]  Arif Hepbasli,et al.  The Potential of Biogas Energy , 2005 .

[23]  J. Vanbriesen Evaluation of methods to predict bacterialyield using thermodynamics , 2004, Biodegradation.

[24]  T. L. Hill,et al.  Free Energy Transduction in Biology: The Steady-State Kinetic and Thermodynamic Formalism , 1977 .

[25]  H. Hamelers,et al.  Principle and perspectives of hydrogen production through biocatalyzed electrolysis , 2006 .

[26]  M. V. van Loosdrecht,et al.  A black box mathematical model to calculate auto‐ and heterotrophic biomass yields based on Gibbs energy dissipation , 1992, Biotechnology and bioengineering.

[27]  J. Pronk,et al.  Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes. , 2004, Metabolic engineering.

[28]  M. V. van Loosdrecht,et al.  Modeling mixed culture fermentations; the role of different electron carriers. , 2008, Water science and technology : a journal of the International Association on Water Pollution Research.

[29]  Willy Verstraete,et al.  The anode potential regulates bacterial activity in microbial fuel cells , 2008, Applied Microbiology and Biotechnology.

[30]  A. Barabasi,et al.  Global organization of metabolic fluxes in the bacterium Escherichia coli , 2004, Nature.

[31]  R. Boston,et al.  The role of thermodynamics in controlling rumen metabolism. , 2000 .

[32]  Willy Verstraete,et al.  Microbial ecology meets electrochemistry: electricity-driven and driving communities , 2007, The ISME Journal.

[33]  J. Dolfing,et al.  Exocellular electron transfer in anaerobic microbial communities. , 2006, Environmental microbiology.

[34]  K. Hellingwerf,et al.  Energetics of microbial growth: an analysis of the relationship between growth and its mechanistic basis by mosaic non-equilibrium thermodynamics , 1982 .

[35]  M. V. van Loosdrecht,et al.  A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth , 1993, Biotechnology and bioengineering.

[36]  Hans G. Schlegel,et al.  Biology of the prokaryotes , 1999 .

[37]  M. Ruzicka,et al.  The effect of hydrogen on acidogenic glucose cleavage , 1996 .

[38]  J. Heijnen Basic Biotechnology: Stoichiometry and kinetics of microbial growth from a thermodynamic perspective , 2006 .

[39]  M. McInerney,et al.  Anaerobic microbial metabolism can proceed close to thermodynamic limits , 2002, Nature.

[40]  M C M van Loosdrecht,et al.  Critical analysis of some concepts proposed in ADM1. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[41]  G. Gäde Anaerobic Energy Metabolism , 1984 .

[42]  J. Gregory Zeikus,et al.  Mixed cultures in biotechnology , 1991 .

[43]  J M Lema,et al.  Variable stoichiometry with thermodynamic control in ADM1. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[44]  Michael Wagner,et al.  Wastewater treatment: a model system for microbial ecology. , 2006, Trends in biotechnology.

[45]  Hector Garcia Martin,et al.  Integrating ecology into biotechnology. , 2007, Current opinion in biotechnology.

[46]  Robbert Kleerebezem,et al.  Modeling product formation in anaerobic mixed culture fermentations , 2006, Biotechnology and bioengineering.

[47]  A. Stams,et al.  Kinetics of syntrophic cultures: a theoretical treatise on butyrate fermentation. , 2000, Biotechnology and bioengineering.

[48]  J. Amend,et al.  A "follow the energy" approach for astrobiology. , 2007, Astrobiology.

[49]  J Keller,et al.  A review of ADM1 extensions, applications, and analysis: 2002-2005. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[50]  W. Verstraete Microbial ecology and environmental biotechnology , 2007, The ISME Journal.