Biological and bioinspired Bouligand structural materials: Recent advances and perspectives

[1]  Shu‐Hong Yu,et al.  Biomimetic Gradient Bouligand Structure Enhances Impact Resistance of Ceramic‐Polymer Composites , 2023, Advanced materials.

[2]  H. Nguyen-Xuan,et al.  Modelling of 3D-printed bio-inspired Bouligand cementitious structures reinforced with steel fibres , 2023, Engineering Structures.

[3]  Linghui He,et al.  Anomalous inapplicability of nacre-like architectures as impact-resistant templates in a wide range of impact velocities , 2022, Nature communications.

[4]  A. Tomsia,et al.  Ginkgo seed shell provides a unique model for bioinspired design , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Coveney,et al.  Hierarchically structured bioinspired nanocomposites , 2022, Nature Materials.

[6]  H. Liu,et al.  An all-natural wood-inspired aerogel. , 2022, Angewandte Chemie.

[7]  X. Yang,et al.  Fiber arrangement endow compression resistance of the mantis shrimp hammer-like appendage , 2022, Journal of Materials Research and Technology.

[8]  K. Mamchaoui,et al.  Brush-Induced Orientation of Collagen Fibers in Layer-by-Layer Nanofilms: A Simple Method for the Development of Human Muscle Fibers. , 2022, ACS nano.

[9]  H. Cölfen,et al.  Bioinspired Chiral Template Guided Mineralization for Biophotonic Structural Materials , 2022, Advanced materials.

[10]  Hao Bai,et al.  Ice-Templated Fabrication of Porous Materials with Bioinspired Architecture and Functionality , 2022, Accounts of Materials Research.

[11]  Shu‐Hong Yu,et al.  Matrix-Directed Mineralization for Bulk Structural Materials. , 2022, Journal of the American Chemical Society.

[12]  Shu‐Hong Yu,et al.  Mechanically robust bamboo node and its hierarchically fibrous structural design , 2022, National science review.

[13]  Qingfeng Sun,et al.  Bioinspired Construction of Micronano Lignocellulose into an Impact Resistance "Wooden Armor" With Bouligand Structure. , 2022, ACS nano.

[14]  Feng Cheng,et al.  Recent Progress in Flax Fiber-Based Functional Composites , 2022, Advanced Fiber Materials.

[15]  N. Kotov,et al.  Multiscale engineered artificial tooth enamel , 2022, Science.

[16]  Jiawei Lv,et al.  Self-assembled inorganic chiral superstructures , 2022, Nature Reviews Chemistry.

[17]  Jiajia Zhou,et al.  Interphase in Polymer Nanocomposites , 2022, JACS Au.

[18]  Yi Li,et al.  Ordering silver nanowires for chiroptical activity , 2022, Science China Materials.

[19]  Liangbing Hu,et al.  Sustainable high-strength macrofibres extracted from natural bamboo , 2021, Nature Sustainability.

[20]  Phuong Tran,et al.  3D concrete printing of bioinspired Bouligand structure: A study on impact resistance , 2021, Additive Manufacturing.

[21]  D. Svergun,et al.  Small-angle X-ray and neutron scattering , 2021, Nature Reviews Methods Primers.

[22]  H. Le Ferrand,et al.  Impact-resistant materials inspired by the mantis shrimp's dactyl club , 2021, Matter.

[23]  Shuhong Yu,et al.  A Highly Compressible and Stretchable Carbon Spring for Smart Vibration and Magnetism Sensors , 2021, Advanced materials.

[24]  S. Goel,et al.  Nature-inspired materials: Emerging trends and prospects , 2021, NPG Asia Materials.

[25]  J. Cairney,et al.  Atom probe tomography , 2021, Nature Reviews Methods Primers.

[26]  K. Du,et al.  Super high-quality SEM/FIB imaging of dentine structures without collagen fiber loss through a metal staining process , 2021, Scientific Reports.

[27]  K. Nelson,et al.  Strong fatigue-resistant nanofibrous hydrogels inspired by lobster underbelly , 2021, Matter.

[28]  Ke-fu Chen,et al.  Chiral Photonic Liquid Crystal Films Derived from Cellulose Nanocrystals. , 2021, Small.

[29]  A. More Flax fiber–based polymer composites: a review , 2021, Advanced Composites and Hybrid Materials.

[30]  P. Hazell,et al.  Biomimetic armour design strategies for additive manufacturing: A review , 2021, Materials & Design.

[31]  Pascal Bruniaux,et al.  Dynamic impact protective body armour: A comprehensive appraisal on panel engineering design and its prospective materials , 2021 .

[32]  Shuhong Yu,et al.  Strengthening and Toughening Hierarchical Nanocellulose via Humidity-Mediated Interface. , 2020, ACS nano.

[33]  R. Vajtai,et al.  Microcomputed tomography–based characterization of advanced materials: a review , 2020, Materials Today Advances.

[34]  G. Hummer,et al.  Atomic Force Microscopy-Based Force Spectroscopy and Multiparametric Imaging of Biomolecular and Cellular Systems. , 2020, Chemical reviews.

[35]  J. Garrevoet,et al.  Molecular to Macroscale Energy Absorption Mechanisms in Biological Body Armour Illuminated by Scanning X-ray Diffraction with In Situ Compression. , 2020, ACS nano.

[36]  Ziqiu Wang,et al.  Highly Crystalline Graphene Fibers with Superior Strength and Conductivities by Plasticization Spinning , 2020, Advanced Functional Materials.

[37]  V. Tsukruk,et al.  Alternating Stacking of Nanocrystals and Nanofibers into Ultra-Strong Chiral Biocomposite Laminates. , 2020, ACS nano.

[38]  Yunhai Ma,et al.  Bioinspired composites reinforced with ordered steel fibers produced via a magnetically assisted 3D printing process , 2020, Journal of Materials Science.

[39]  R. Ritchie,et al.  Tough Nature-Inspired Helicoidal Composites with Printing-Induced Voids , 2020, Cell Reports Physical Science.

[40]  S. Cai,et al.  Discontinuous fibrous Bouligand architecture enabling formidable fracture resistance with crack orientation insensitivity , 2020, Proceedings of the National Academy of Sciences.

[41]  Prasanna V. Balachandran,et al.  Chemical Gradients in Human Enamel Crystallites. , 2020, Nature.

[42]  Qinghua Zhang,et al.  Real-time visualization of solid-phase ion migration kinetics on nanowire monolayer. , 2020, Journal of the American Chemical Society.

[43]  A. Tomsia,et al.  Layered nanocomposites by shear-flow-induced alignment of nanosheets , 2020, Nature.

[44]  Alexander L. Shluger,et al.  Roadmap on multiscale materials modeling , 2020, Modelling and Simulation in Materials Science and Engineering.

[45]  K. R. Koswattage,et al.  Review on applications of synchrotron‐based X‐ray techniques in materials characterization , 2020 .

[46]  V. Tsukruk,et al.  Biopolymeric photonic structures: design, fabrication, and emerging applications. , 2020, Chemical Society reviews.

[47]  W. Tian,et al.  Strength and toughness enhancement in 3d printing via bioinspired tool path , 2020 .

[48]  A. Majumdar,et al.  A review of fibrous materials for soft body armour applications , 2020 .

[49]  R. Ritchie,et al.  Hyperelastic phase-field fracture mechanics modeling of the toughening induced by Bouligand structures in natural materials , 2019, Journal of the Mechanics and Physics of Solids.

[50]  Shuhong Yu,et al.  Nanowire Genome: A Magic Toolbox for 1D Nanostructures , 2019, Advanced materials.

[51]  Hong-Bin Yao,et al.  Superior Biomimetic Nacreous Bulk Nanocomposites by a Multiscale Soft-Rigid Dual-Network Interfacial Design Strategy , 2019, Matter.

[52]  Frances Y. Su,et al.  Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs , 2019, Advanced materials.

[53]  F. Barthelat,et al.  Impact-resistant nacre-like transparent materials , 2019, Science.

[54]  R. Ritchie,et al.  Arapaima Fish Scale: One of the Toughest Flexible Biological Materials , 2019, Matter.

[55]  Steven A Herrera,et al.  The Stomatopod Telson: Convergent Evolution in the Development of a Biological Shield , 2019, Advanced Functional Materials.

[56]  D. Weitz,et al.  Transparent Impact-Resistant Composite Films with Bioinspired Hierarchical Structure. , 2019, ACS applied materials & interfaces.

[57]  S. Cai,et al.  Fracture modes and hybrid toughening mechanisms in oscillated/twisted plywood structure. , 2019, Acta biomaterialia.

[58]  Defang Ding,et al.  Biomimetic Chiral Photonic Crystals. , 2019, Angewandte Chemie.

[59]  Zhao Qin,et al.  Natural hydrogel in American lobster: A soft armor with high toughness and strength. , 2019, Acta biomaterialia.

[60]  M. MacLachlan,et al.  Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics , 2019, Nature Communications.

[61]  R. Ritchie,et al.  Strong, Fracture-Resistant Biomimetic Silicon Carbide Composites with Laminated Interwoven Nanoarchitectures Inspired by the Crustacean Exoskeleton , 2019, ACS Applied Nano Materials.

[62]  Benjamin C. Marchi,et al.  Impact resistance of nanocellulose films with bioinspired Bouligand microstructures , 2019, Nanoscale advances.

[63]  A. Studart,et al.  Three-dimensional printing of hierarchical liquid-crystal-polymer structures , 2018, Nature.

[64]  B. Magee,et al.  Additive Manufacturing and Performance of Architectured Cement‐Based Materials , 2018, Advanced materials.

[65]  S. Hamdan,et al.  Recent developments in bamboo fiber-based composites: a review , 2018, Polymer Bulletin.

[66]  Shu-Hong Yu,et al.  Bioinspired polymeric woods , 2018, Science Advances.

[67]  Shuhong Yu,et al.  Biomimetic twisted plywood structural materials , 2018, National Science Review.

[68]  Shuhong Yu,et al.  Self-healing and superstretchable conductors from hierarchical nanowire assemblies , 2018, Nature Communications.

[69]  F. Barthelat,et al.  Tough and deformable glasses with bioinspired cross-ply architectures. , 2018, Acta biomaterialia.

[70]  Robert O Ritchie,et al.  On the Materials Science of Nature's Arms Race , 2018, Advanced materials.

[71]  Lei Jiang,et al.  Aligning Ag Nanowires by a Facile Bioinspired Directional Liquid Transfer: Toward Anisotropic Flexible Conductive Electrodes , 2018, Advanced materials.

[72]  D. Kaplan,et al.  Nanofibrils in nature and materials engineering. , 2018, Nature reviews. Materials.

[73]  M. MacLachlan,et al.  Aerogel materials with periodic structures imprinted with cellulose nanocrystals. , 2018, Nanoscale.

[74]  C. Baley,et al.  Flax stems: from a specific architecture to an instructive model for bioinspired composite structures , 2018, Bioinspiration & biomimetics.

[75]  Qunfeng Cheng,et al.  High‐Performance Nanocomposites Inspired by Nature , 2017, Advanced materials.

[76]  Chuanjin Huang,et al.  Freeze Casting for Assembling Bioinspired Structural Materials , 2017, Advanced materials.

[77]  Wenwen Huang,et al.  Polymorphic regenerated silk fibers assembled through bioinspired spinning , 2017, Nature Communications.

[78]  E. Saiz,et al.  3D Printing Bioinspired Ceramic Composites , 2017, Scientific Reports.

[79]  Joseph M Slocik,et al.  Bio-Optics and Bio-Inspired Optical Materials. , 2017, Chemical reviews.

[80]  Shuhong Yu,et al.  Mass production of bulk artificial nacre with excellent mechanical properties , 2017, Nature Communications.

[81]  A. Walther,et al.  Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space , 2017 .

[82]  P. Zavattieri,et al.  Twisting cracks in Bouligand structures. , 2017, Journal of the mechanical behavior of biomedical materials.

[83]  Defang Ding,et al.  Gold Nanowire Chiral Ultrathin Films with Ultrastrong and Broadband Optical Activity. , 2017, Angewandte Chemie.

[84]  C. Gerber,et al.  Atomic force microscopy-based characterization and design of biointerfaces , 2017 .

[85]  A. Waas,et al.  Abiotic tooth enamel , 2017, Nature.

[86]  K. Shung,et al.  Biomimetic Anisotropic Reinforcement Architectures by Electrically Assisted Nanocomposite 3D Printing , 2017, Advanced materials.

[87]  H. Espinosa,et al.  AFM Identification of Beetle Exocuticle: Bouligand Structure and Nanofiber Anisotropic Elastic Properties , 2017 .

[88]  André R. Studart,et al.  Bio-inspired self-shaping ceramics , 2016, Nature Communications.

[89]  Thierry Savin,et al.  Recent advances in the biomimicry of structural colours. , 2016, Chemical Society reviews.

[90]  Lei Liu,et al.  Synthetic nacre by predesigned matrix-directed mineralization , 2016, Science.

[91]  B. Rolfe,et al.  Structure–property relationships of elementary bamboo fibers , 2016, Cellulose.

[92]  Liang Xu,et al.  Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure , 2016, Nature Communications.

[93]  Thomas Bligh Scott,et al.  High-speed atomic force microscopy for materials science , 2016 .

[94]  D. Hwang,et al.  Chiral nematic self-assembly of minimally surface damaged chitin nanofibrils and its load bearing functions , 2016, Scientific Reports.

[95]  Holly J. Butler,et al.  Using Raman spectroscopy to characterize biological materials , 2016, Nature Protocols.

[96]  Francois Barthelat,et al.  Structure and mechanics of interfaces in biological materials , 2016 .

[97]  Otmar Kolednik,et al.  The mechanics of tessellations - bioinspired strategies for fracture resistance. , 2016, Chemical Society reviews.

[98]  Michelle L. Oyen,et al.  Nanoindentation of hydrated materials and tissues , 2015 .

[99]  H. Le Ferrand,et al.  Magnetically assisted slip casting of bioinspired heterogeneous composites. , 2015, Nature materials.

[100]  Shuhong Yu,et al.  A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation , 2015, Science Advances.

[101]  Randall M. Erb,et al.  Designing bioinspired composite reinforcement architectures via 3D magnetic printing , 2015, Nature Communications.

[102]  Satoshi Kajiyama,et al.  Formation of Helically Structured Chitin/CaCO3 Hybrids through an Approach Inspired by the Biomineralization Processes of Crustacean Cuticles. , 2015, Small.

[103]  M. Meyers,et al.  Structural Design Elements in Biological Materials: Application to Bioinspiration , 2015, Advanced materials.

[104]  A. Walther,et al.  Self-Assembled, Iridescent, Crustacean-Mimetic Nanocomposites with Tailored Periodicity and Layered Cuticular Structure. , 2015, ACS nano.

[105]  C. Barner‐Kowollik,et al.  Hierarchical Nacre Mimetics with Synergistic Mechanical Properties by Control of Molecular Interactions in Self-Healing Polymers. , 2015, Angewandte Chemie.

[106]  F. Barthelat,et al.  A laser-engraved glass duplicating the structure, mechanics and performance of natural nacre , 2015, Bioinspiration & biomimetics.

[107]  Z. Suo,et al.  Laminar tendon composites with enhanced mechanical properties , 2015, Journal of Materials Science.

[108]  E. Saiz,et al.  Bioinspired structural materials. , 2014, Nature materials.

[109]  Steven A Herrera,et al.  Bio-inspired impact-resistant composites. , 2014, Acta biomaterialia.

[110]  Mason R. Mackey,et al.  Protective role of Arapaima gigas fish scales: structure and mechanical behavior. , 2014, Acta biomaterialia.

[111]  Shu-Hong Yu,et al.  Nanoparticles meet electrospinning: recent advances and future prospects. , 2014, Chemical Society reviews.

[112]  Wen Yang,et al.  Mechanical adaptability of the Bouligand-type structure in natural dermal armour , 2013, Nature Communications.

[113]  Á. Alegría,et al.  Hydration and Dynamic State of Nanoconfined Polymer Layers Govern Toughness in Nacre‐mimetic Nanocomposites , 2013, Advanced materials.

[114]  Qiang Zhang,et al.  Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. , 2013, ACS nano.

[115]  Wen Yang,et al.  Natural Flexible Dermal Armor , 2013, Advanced materials.

[116]  D. Van dyck,et al.  Advanced Electron Microscopy for Advanced Materials , 2012, Advanced materials.

[117]  Jeremy J. Baumberg,et al.  Pointillist structural color in Pollia fruit , 2012, Proceedings of the National Academy of Sciences.

[118]  Ping Wang,et al.  Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers , 2012, Scientific Reports.

[119]  O. Ikkala,et al.  SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions , 2012, Cellulose.

[120]  I. Jasiuk,et al.  Mechanical properties of porcine femoral cortical bone measured by nanoindentation. , 2012, Journal of biomechanics.

[121]  Steven A Herrera,et al.  The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer , 2012, Science.

[122]  André R Studart,et al.  Composites Reinforced in Three Dimensions by Using Low Magnetic Fields , 2012, Science.

[123]  H. Barth,et al.  Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. , 2011, Biomaterials.

[124]  A. Waas,et al.  Dispersions of aramid nanofibers: a new nanoscale building block. , 2011, ACS nano.

[125]  L. Qian,et al.  Controlled freezing and freeze drying: a versatile route for porous and micro‐/nano‐structured materials , 2011 .

[126]  Jian-Hua Zhu,et al.  Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. , 2010, Journal of the American Chemical Society.

[127]  Younan Xia,et al.  Magnetic‐Field‐Assisted Electrospinning of Aligned Straight and Wavy Polymeric Nanofibers , 2010, Advanced materials.

[128]  A. Déjardin,et al.  Wood formation in Angiosperms. , 2010, Comptes rendus biologies.

[129]  A. Dufresne,et al.  High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado) , 2010 .

[130]  R. Ritchie,et al.  On the Mechanistic Origins of Toughness in Bone , 2010 .

[131]  Mohan Srinivasarao,et al.  Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles , 2009, Science.

[132]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[133]  R O Ritchie,et al.  The true toughness of human cortical bone measured with realistically short cracks. , 2008, Nature materials.

[134]  Jiang Chang,et al.  Patterning of Electrospun Fibers Using Electroconductive Templates , 2007 .

[135]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[136]  Mircea Chipara,et al.  Convenient, Rapid Synthesis of Ag Nanowires , 2007 .

[137]  Lisa A. Pruitt,et al.  Nanoindentation of biological materials , 2006 .

[138]  S. Ramakrishna,et al.  A review on electrospinning design and nanofibre assemblies , 2006, Nanotechnology.

[139]  M. Burghammer,et al.  Spiral twisting of fiber orientation inside bone lamellae , 2006, Biointerphases.

[140]  K. Ravi-Chandar,et al.  Helicoidal Composites , 2006 .

[141]  Shaswat Kumar Das,et al.  Bamboo—A functionally graded composite-correlation between microstructure and mechanical strength , 2005 .

[142]  Jacqueline A. Cutroni,et al.  Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture , 2005, Nature materials.

[143]  N. Umesaki,et al.  Advanced materials analysis using synchrotron radiation and its application in engineering science , 2004 .

[144]  Michael F. Ashby,et al.  The mechanical efficiency of natural materials , 2004 .

[145]  Paul Roschger,et al.  From brittle to ductile fracture of bone , 2006, Nature materials.