Content and composition of free and occluded particulate organic matter in a differently textured arable Cambisol as revealed by solid‐state 13C NMR spectroscopy

The composition of functional light soil organic matter pools of arable Cambisols with a gradient in clay content was investigated. Soil texture differences originate from increasing loess admixture to the parent material (coarse-grained tertiary sediments). Using density fractionation in combination with ultrasonic dispersion, two types of particulate organic matter (POM) were obtained: (1) free POM and (2) POM occluded in soil aggregates. Both POM fractions were analyzed by elemental analysis (C, N) and CPMAS 13C NMR spectroscopy. With increasing clay content the amount of organic carbon stored in the occluded POM fraction increased considerably, whereas the amounts of free POM were not related to the soil clay content. With increasing soil clay contents increasing proportions of O-alkyl C and decreasing proportions of aryl C were found for both POM fractions. The occluded POM fraction showed a higher degree of degradation as indicated by lower amounts in O-alkyl carbon. A lower degree of POM degradation was associated with higher clay contents. Higher soil clay contents promoted the conservation of POM with a low degree of alteration. This effect of soil texture was found to be highly significant when the aryl C : O-alkyl C ratio was used as indicator for POM decomposition rather than the alkyl C : O-alkyl C ratio. Menge und Zusammensetzung freier und okkludierter partikularer organischer Substanz in ackerbaulich genutzten Braunerden mit unterschiedlicher Bodentextur, aufgezeigt mittels Festkorper-13C-NMR-Spektroskopie Es wurde die Zusammensetzung funktionaler, leichter Pools der organischen Bodensubstanz in ackerbaulich genutzten Braunerden entlang eines Tongehaltsgradienten untersucht. Die Unterschiede in der Bodentextur liesen sich auf unterschiedliche Ausgangsmaterialien zuruckfuhren (grobkornige tertiare Sedimente mit zunehmenden Losanteilen). Mittels Dichtefraktionierung und Ultraschallbehandlung wurden zwei Arten von partikularem organischen Material (POM) gewonnen: (1) freies POM und (2) in Aggregaten okkludiertes POM. An beiden POM-Fraktionen wurden Elementaranalysen (C, N) sowie CPMAS-13C-NMR-spektroskopische Untersuchungen durchgefuhrt. Die okkludierte POM-Fraktion weist einen hoheren Abbaugrad auf, wie die geringeren Anteile an O-Alkyl-Kohlenstoff zeigen. Mit zunehmendem Tongehalt nimmt der Gehalt an organischem Kohlenstoff, der als okkludierte POM-Fraktion gespeichert wird, deutlich zu. Die Menge des freien POM ist dagegen nicht mit dem Tongehalt des Bodens korreliert. Beide POM-Fraktionen zeigen mit steigendem Tongehalt zunehmende Anteile an O-Alkyl-C, aber abnehmende Anteile an Aryl-C. Mit dem hoheren Tongehalt im Boden ist ein geringerer Abbaugrad des POM verbunden. Hohere Tongehalte fordern somit die Erhaltung weniger umgewandelter POM-Fraktionen. Dieser Effekt der Bodentextur wird nur dann hochsignifikant sichtbar, wenn das Aryl-C:O-Alkyl-C-Verhaltnis und nicht das Alkyl-C:O-Alkyl-C-Verhaltnis als Indikator fur den Abbaugrad der POM-Fraktionen herangezogen wird.

[1]  K. Paustian,et al.  Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils , 2002, Plant and Soil.

[2]  John H. Grove,et al.  A review of no-till systems and soil management for sustainable crop production in the subhumid and semiarid Pampas of Argentina , 2002 .

[3]  I. Kögel‐Knabner,et al.  Indications for soil organic matter quality in soils under different management , 2002 .

[4]  Jean Charles Munch,et al.  Land use and sustainability: FAM Research Network on Agroecosystems , 2002 .

[5]  Ingrid Kögel-Knabner,et al.  The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter , 2002 .

[6]  A. Oates,et al.  Soil carbon fractions and relationship to soil quality under different tillage and stubble management , 2002 .

[7]  K. Chan Soil particulate organic carbon under different land use and management , 2001 .

[8]  K. Paustian,et al.  Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics , 2001 .

[9]  B. Christensen Physical fractionation of soil and structural and functional complexity in organic matter turnover , 2001 .

[10]  S. Traina,et al.  Particulate Organic Matter Composition and Pythium Damping‐Off of Cucumber , 2001 .

[11]  J. Lehmann,et al.  Organic matter stabilization in a Xanthic Ferralsol of the central Amazon as affected by single trees: chemical characterization of density, aggregate, and particle size fractions , 2001 .

[12]  P. Puget,et al.  Dynamics of soil organic matter associated with particle‐size fractions of water‐stable aggregates , 2000 .

[13]  I. Burke,et al.  Biogeochemistry in a shortgrass landscape: control by topography, soil texture, and microclimate. , 2000 .

[14]  W. Amelung,et al.  Carbon and nitrogen in the enriched labile fraction along a climosequence of zonal steppe soils in Russia , 2000 .

[15]  J. Baldock,et al.  Role of the soil matrix and minerals in protecting natural organic materials against biological attack , 2000 .

[16]  I. Kögel‐Knabner Analytical approaches for characterizing soil organic matter , 2000 .

[17]  P. Leinweber,et al.  New insights into organic-mineral particles: composition, properties and models of molecular structure , 2000, Biology and Fertility of Soils.

[18]  C. Cambardella,et al.  Surface residue- and root-derived carbon in stable and unstable aggregates , 2000 .

[19]  B. A. Needelman,et al.  Interaction of Tillage and Soil Texture Biologically Active Soil Organic Matter in Illinois , 1999 .

[20]  Ingrid Kögel-Knabner,et al.  Evaluation of an ultrasonic dispersion procedure to isolate primary organomineral complexes from soils , 1999 .

[21]  J. van der Plicht,et al.  Soil organic matter dynamics after the conversion of arable land to pasture , 1999, Biology and Fertility of Soils.

[22]  Johan Six,et al.  Aggregation and soil organic matter accumulation in cultivated and native grassland soils , 1998 .

[23]  Rattan Lal,et al.  Soil processes and the carbon cycle. , 1998 .

[24]  A. Whitmore,et al.  Size and density fractionation of soil organic matter and the physical capacity of soils to protect organic matter , 1997 .

[25]  C. Feller,et al.  Physical control of soil organic matter dynamics in the tropics , 1997 .

[26]  A. Whitmore,et al.  A model of the physical protection of organic matter in soils , 1997 .

[27]  J. Baldock,et al.  Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy , 1997 .

[28]  C. Langford,et al.  A Modified Cross-Polarization Magic Angle Spinning 13C NMR Procedure for the Study of Humic Materials , 1996 .

[29]  A. Franzluebbers,et al.  WATER-STABLE AGGREGATION AND ORGANIC MATTER IN FOUR SOILS UNDER CONVENTIONAL AND ZERO TILLAGE , 1996 .

[30]  A. Gijsman Soil aggregate stability and soil organic matter fractions under agropastoral systems established in native savanna , 1996 .

[31]  J. Skjemstad,et al.  The effects of cultivation on the composition of organic matter and structural stability of soils , 1995 .

[32]  J. Skjemstad,et al.  Study of free and occluded particulate organic matter in soils by solid state 13C Cp/MAS NMR spectroscopy and scanning electron microscopy , 1994 .

[33]  Steven O. Smith,et al.  Variable-Amplitude Cross-Polarization MAS NMR , 1993 .

[34]  J. Oades The role of biology in the formation, stabilization and degradation of soil structure , 1993 .

[35]  M. Wilson,et al.  Aspects of the chemical structure of soil organic materials as revealed by solid-state13C NMR spectroscopy , 1992 .

[36]  B. Christensen Physical Fractionation of Soil and Organic Matter in Primary Particle Size and Density Separates , 1992 .

[37]  Michael A. Wilson N.M.R. techniques and applications in geochemistry and soil chemistry , 1987 .