暂无分享,去创建一个
[1] Hassan Mansour,et al. Recovering Compressively Sampled Signals Using Partial Support Information , 2010, IEEE Transactions on Information Theory.
[2] Åke Björck,et al. Numerical methods for least square problems , 1996 .
[3] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[4] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[5] Yin Zhang,et al. Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..
[6] Emmanuel J. Candès,et al. NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..
[7] Junfeng Yang,et al. Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..
[8] Michael Elad,et al. Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.
[9] Emmanuel J. Candès,et al. Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..
[10] Stephen J. Wright,et al. Sparse reconstruction by separable approximation , 2009, IEEE Trans. Signal Process..
[11] M. R. Osborne,et al. A new approach to variable selection in least squares problems , 2000 .
[12] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[13] Gene H. Golub,et al. Matrix computations , 1983 .
[14] N. Meinshausen,et al. LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.
[15] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[16] I. Daubechies,et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.
[17] E. Candès,et al. Near-ideal model selection by ℓ1 minimization , 2008, 0801.0345.
[18] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[19] Stephen P. Boyd,et al. Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.
[20] José M. Bioucas-Dias,et al. Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.
[21] José M. Bioucas-Dias,et al. A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.
[22] Weiyu Xu,et al. Improved sparse recovery thresholds with two-step reweighted ℓ1 minimization , 2010, 2010 IEEE International Symposium on Information Theory.
[23] Mário A. T. Figueiredo,et al. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.
[24] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[25] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[26] Hassan Mansour,et al. Beyond ℓ1-norm minimization for sparse signal recovery , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).
[27] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[28] Yaakov Tsaig,et al. Fast Solution of $\ell _{1}$ -Norm Minimization Problems When the Solution May Be Sparse , 2008, IEEE Transactions on Information Theory.
[29] Michael P. Friedlander,et al. Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..
[30] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[31] Jean-Jacques Fuchs,et al. On sparse representations in arbitrary redundant bases , 2004, IEEE Transactions on Information Theory.
[32] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[33] Gareth M. James,et al. Improved variable selection with Forward-Lasso adaptive shrinkage , 2011, 1104.3390.