Entropy generation in a porous channel with hydromagnetic effect

An analytical work has been performed to study the First and Second Laws (of thermodynamics) characteristics of flow and heat transfer inside a vertical channel made of two parallel plates embedded in a porous medium and under the action of transverse magnetic field. Combined free and forced convection inside the channel is considered. Flow is assumed to be steady, laminar, fully developed of electrically conducting and heat-generating/absorbing fluid. Both vertical walls are kept isothermal at the same or different temperatures. Governing equations in Cartesian coordinate are simplified and solved analytically to develop expressions for velocity and temperature, entropy generation number and irreversibility distribution ratio. Velocity, temperature and entropy generation profiles are presented graphically.