Numerical Methods for the Continuation of Invariant Tori
暂无分享,去创建一个
[1] Neil Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .
[2] J. Hale,et al. Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.
[3] W. Langford. Periodic and Steady-State Mode Interactions Lead to Tori , 1979 .
[4] U. Ascher,et al. Reformulation of Boundary Value Problems into “Standard” Form , 1981 .
[5] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[6] Gene H. Golub,et al. Matrix computations , 1983 .
[7] W. Langford. Numerical Studies of Torus Bifurcations , 1984 .
[8] Hans G. Othmer,et al. Synchronization, Phase-Locking and Other Phenomena in Coupled Cells , 1985 .
[9] H. Othmer. Nonlinear Oscillations in Biology and Chemistry , 1986 .
[10] M. van Veldhuizen. A new algorithm for the numerical approximation of an invariant curve , 1987 .
[11] Hans G. Othmer,et al. An analytical and numerical study of the bifurcations in a system of linearly-coupled oscillators , 1987 .
[12] L. Chua,et al. Chaos via torus breakdown , 1987 .
[13] H. Othmer,et al. On the collapse of the resonance structure in a three-parameter family of coupled oscillators , 1988 .
[14] Wolf-Jürgen Beyn,et al. The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .
[15] Robert D. Russell,et al. Numerical Calculation of Invariant Tori , 1991, SIAM J. Sci. Comput..
[16] K. Schmitt,et al. Persistence of invariant tori in systems of coupled oscillators I: Regular and singular problems , 1991 .
[17] H. Othmer,et al. Persistence of invariant tori in systems of coupled oscillators: II. degenerate problems , 1991 .
[18] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[19] Luca Dieci,et al. Solution of the Systems Associated with Invariant Tori Approximation. II: Multigrid Methods , 1994, SIAM J. Sci. Comput..
[20] S. Wiggins. Normally Hyperbolic Invariant Manifolds in Dynamical Systems , 1994 .
[21] G. Moore,et al. Geometric methods for computing invariant manifolds , 1995 .
[22] Robert D. Russell,et al. Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.
[23] Luca Dieci,et al. Computation of invariant tori by the method of characteristics , 1995 .
[24] L. Dieci,et al. Block iterations and compactification for periodic block dominant systems associated to invariant tori approximation , 1995 .
[25] G. Moore,et al. Computation and parametrization of periodic and connecting orbits , 1995 .
[26] G. Moore,et al. Computation and Parametrisation of Invariant Curves and Tori , 1996 .
[27] Hinke M. Osinga,et al. Computing invariant manifolds , 1996 .
[28] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[29] G. Vegter,et al. Algorithms for computing normally hyperbolic invariant manifolds , 1997 .
[30] Lixin Liu,et al. Computation and Continuation of Homoclinic and Heteroclinic Orbits with Arclength Parameterization , 1997, SIAM J. Sci. Comput..
[31] Tassilo Küpper,et al. Computation of Invariant Tori by the Fourier Methods , 1997, SIAM J. Sci. Comput..
[32] Andrew Y. T. Leung,et al. Construction of Invariant Torus Using Toeplitz Jacobian Matrices/Fast Fourier Transform Approach , 1998 .
[33] G. Moore,et al. Algorithms for constructing stable manifolds of stationary solutions , 1999 .
[34] Volker Reichelt,et al. Computing Invariant Tori and Circles in Dynamical Systems , 2000 .
[35] Bernd Krauskopf,et al. Investigating torus bifurcations in the forced Van der Pol oscillator , 2000 .
[36] Manfred R. Trummer. Spectral methods in computing invariant tori , 2000 .
[37] Nicholas J. Higham,et al. A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra , 2000, SIAM J. Matrix Anal. Appl..
[38] T. Valkering,et al. Dynamics of two capacitively coupled Josephson junctions in the overdamped limit , 2000 .
[39] Luca Dieci,et al. Lyapunov-type numbers and torus breakdown: numerical aspects and a case study , 1997, Numerical Algorithms.