Gene-associated markers provide tools for tackling illegal fishing and false eco-certification

Illegal, Unreported and Unregulated fishing has had a major role in the overexploitation of global fish populations. In response, international regulations have been imposed and many fisheries have been 'eco-certified' by consumer organizations, but methods for independent control of catch certificates and eco-labels are urgently needed. Here we show that, by using gene-associated single nucleotide polymorphisms, individual marine fish can be assigned back to population of origin with unprecedented high levels of precision. By applying high differentiation single nucleotide polymorphism assays, in four commercial marine fish, on a pan-European scale, we find 93-100% of individuals could be correctly assigned to origin in policy-driven case studies. We show how case-targeted single nucleotide polymorphism assays can be created and forensically validated, using a centrally maintained and publicly available database. Our results demonstrate how application of gene-associated markers will likely revolutionize origin assignment and become highly valuable tools for fighting illegal fishing and mislabelling worldwide.

Rob Ogden | Antonella Zanzi | Ilaria Guarniero | Alessia Cariani | Alexander Volkov | Corrado Piccinetti | Gary R Carvalho | Ross McEwing | Frank Panitz | Christian Bendixen | Barbara Cardazzo | Tomaso Patarnello | Einar E Nielsen | Eoin Mac Aoidh | Gregory E Maes | Ilaria Milano | Martin Taylor | Jakob Hemmer-Hansen | Massimiliano Babbucci | Luca Bargelloni | Dorte Bekkevold | Eveline Diopere | Leonie Grenfell | Sarah Helyar | Morten T Limborg | Jann T Martinsohn | Fausto Tinti | Jeroen K J Van Houdt | Filip A M Volckaert | Robin S Waples | Jan E J Albin | Juan M Vieites Baptista | Vladimir Barmintsev | José M Bautista | Jean-Pascal Bergé | Dietmar Blohm | Amalia Diez | Montserrat Espiñeira | Audrey J Geffen | Elena Gonzalez | Nerea González-Lavín | Marc Jeráme | Marc Kochzius | Grigorius Krey | Olivier Mouchel | Enrico Negrisolo | Antonio Puyet | Sergey Rastorguev | Jane P Smith | Massimo Trentini | Véronique Verrez-Bagnis | J. Hemmer-Hansen | E. Nielsen | M. Limborg | D. Bekkevold | C. Piccinetti | E. González | C. Bendixen | F. Panitz | L. Bargelloni | T. Patarnello | G. Carvalho | O. Mouchel | G. Maes | S. Helyar | R. Ogden | A. Cariani | E. Diopere | D. Blohm | R. Waples | B. Cardazzo | M. Babbucci | F. Volckaert | V. Verrez-Bagnis | M. Espiñeira | I. Guarniero | I. Milano | A. Geffen | F. Tinti | E. Mac Aoidh | J. Martinsohn | J. Bautista | E. Negrisolo | S. Rastorguev | J. Bergé | A. Puyet | R. Mcewing | M. Kochzius | J. Van Houdt | A. Zanzi | M. Trentini | Leonie R. Grenfell | A. Diez | V. Barmintsev | M. Taylor | A. Volkov | N. González‐Lavín | Jan E. J. Juan M. Vladimir José M. Christian Jean-Pasc Albin Vieites Baptista Barmintsev Bautista Be | Jan E. J. Albin | Marc Jeráme | Grigorius Krey | Jane P. Smith | E. M. Aoidh | E. Gonzalez | Jakob Hemmer-Hansen | Eveline Diopere

[1]  Einar E Nielsen,et al.  Population genomics of marine fishes: identifying adaptive variation in space and time , 2009, Molecular ecology.

[2]  P. Snelgrove,et al.  Parallel adaptive evolution of Atlantic cod on both sides of the Atlantic Ocean in response to temperature , 2010, Proceedings of the Royal Society B: Biological Sciences.

[3]  G. Hoarau,et al.  Genetic population structure of marine fish : mismatch between biological and fisheries management units , 2009 .

[4]  J. Merilä,et al.  A high incidence of selection on physiologically important genes in the three-spined stickleback, Gasterosteus aculeatus. , 2011, Molecular biology and evolution.

[5]  B. Hayes,et al.  Identification and characterisation of novel SNP markers in Atlantic cod: Evidence for directional selection , 2008, BMC Genetics.

[6]  H. Nance,et al.  Genetic detection of mislabeled fish from a certified sustainable fishery , 2011, Current Biology.

[7]  R. Hilborn,et al.  Population diversity and the portfolio effect in an exploited species , 2010, Nature.

[8]  M. Nei Molecular Evolutionary Genetics , 1987 .

[9]  J. Shendure,et al.  Exome-wide DNA capture and next generation sequencing in domestic and wild species , 2011, BMC Genomics.

[10]  O. Gaggiotti,et al.  A Genome-Scan Method to Identify Selected Loci Appropriate for Both Dominant and Codominant Markers: A Bayesian Perspective , 2008, Genetics.

[11]  Kevin D. Friedland,et al.  Stock identification methods : applications in fishery science , 2005 .

[12]  E C Anderson,et al.  Assessing the power of informative subsets of loci for population assignment: standard methods are upwardly biased , 2010, Molecular ecology resources.

[13]  G. Luikart,et al.  SNPs in ecology, evolution and conservation , 2004 .

[14]  J. Cornuet,et al.  GENECLASS2: a software for genetic assignment and first-generation migrant detection. , 2004, The Journal of heredity.

[15]  P. Martínez,et al.  Gene flow, multilocus assignment and genetic structuring of the european hake (merluccius merluccius) , 2010 .

[16]  D. Bekkevold,et al.  Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring , 2006, Proceedings of the Royal Society B: Biological Sciences.

[17]  François Rousset,et al.  GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism , 1995 .

[18]  J. Hemmer-Hansen,et al.  Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua) , 2009, BMC Evolutionary Biology.

[19]  S. Gaines,et al.  Evolving science of marine reserves: New developments and emerging research frontiers , 2010, Proceedings of the National Academy of Sciences.

[20]  E. Nielsen,et al.  Fisheries: Population of origin of Atlantic cod , 2001, Nature.

[21]  R. Waples Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species , 1998 .

[22]  J. Hemmer-Hansen,et al.  Identification of single nucleotide polymorphisms in candidate genes for growth and reproduction in a nonmodel organism; the Atlantic cod, Gadus morhua , 2011, Molecular ecology resources.

[23]  Rob Ogden,et al.  Fisheries forensics: the use of DNA tools for improving compliance, traceability and enforcement in the fishing industry , 2008 .

[24]  T. Pitcher,et al.  Estimating the Worldwide Extent of Illegal Fishing , 2009, PloS one.

[25]  Microchemical variation in juvenile Solea solea otoliths as a powerful tool for studying connectivity in the North Sea , 2010 .

[26]  Arnaud Estoup,et al.  Genetic assignment methods for the direct, real‐time estimation of migration rate: a simulation‐based exploration of accuracy and power , 2004, Molecular ecology.

[27]  J. Cornuet,et al.  Computer Note GENECLASS 2 : A Software for Genetic Assignment and First-Generation Migrant Detection , 2004 .

[28]  C. Primmer,et al.  Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies , 2005, Molecular ecology.

[29]  T. Kawecki,et al.  Conceptual issues in local adaptation , 2004 .

[30]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[31]  B. Rannala,et al.  Detecting immigration by using multilocus genotypes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[32]  R. Hilborn,et al.  Rebuilding Global Fisheries , 2009, Science.

[33]  Jared L. Strasburg,et al.  What can patterns of differentiation across plant genomes tell us about adaptation and speciation? , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  M. Ferguson,et al.  Role of genetic markers in fisheries and aquaculture : useful tools or stamp collecting? , 1998 .

[35]  Stefan Flothmann,et al.  Closing Loopholes: Getting Illegal Fishing Under Control , 2010, Science.

[36]  S. Bowman,et al.  Development of a SNP resource and a genetic linkage map for Atlantic cod (Gadus morhua) , 2010, BMC Genomics.