An Adjustment Process-based Algorithm with Error Bounds for Approximating a Nash Equilibrium

Regarding the approximation of Nash equilibria in games where the players have a continuum of strategies, there exist various algorithms based on best response dynamics and on its relaxed variants: from one step to the next, a player's strategy is updated by using explicitly a best response to the strategies of the other players that come from the previous steps. These iterative schemes generate sequences of strategy profiles which are constructed by using continuous optimization techniques and they have been shown to converge in the following situations: in zero-sum games or, in non zero-sum ones, under contraction assumptions or under linearity of best response functions. In this paper, we propose an algorithm which guarantees the convergence to a Nash equilibrium in two-player non zero-sum games when the best response functions are not necessarily linear, both their compositions are not contractions and the strategy sets are Hilbert spaces. Firstly, we address the issue of uniqueness of the Nash equilibrium extending to a more general class the result obtained by Caruso, Ceparano, and Morgan [J. Math. Anal. Appl., 459 (2018), pp. 1208-1221] for weighted potential games. Then, we describe a theoretical approximation scheme based on a non-standard (non-convex) relaxation of best response iterations which converges to the unique Nash equilibrium of the game. Finally, we define a numerical approximation scheme relying on a derivative-free continuous optimization technique applied in a finite dimensional setting and we provide convergence results and error bounds.

[1]  David S. Leslie,et al.  Bandit learning in concave $N$-person games , 2018, 1810.01925.

[2]  Sebastian Bervoets,et al.  Learning with minimal information in continuous games , 2018, Theoretical Economics.

[3]  J. Morgan,et al.  Uniqueness of Nash equilibrium in continuous two-player weighted potential games , 2018 .

[4]  Simone Sagratella,et al.  Algorithms for generalized potential games with mixed-integer variables , 2017, Comput. Optim. Appl..

[5]  Zhengyuan Zhou,et al.  Learning in games with continuous action sets and unknown payoff functions , 2016, Mathematical Programming.

[6]  S. Shankar Sastry,et al.  Characterization and computation of local Nash equilibria in continuous games , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[7]  Yunmei Chen,et al.  Optimal Primal-Dual Methods for a Class of Saddle Point Problems , 2013, SIAM J. Optim..

[8]  Francisco Facchinei,et al.  Decomposition algorithms for generalized potential games , 2011, Comput. Optim. Appl..

[9]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[10]  Francisco Facchinei,et al.  Generalized Nash Equilibrium Problems , 2010, Ann. Oper. Res..

[11]  Georgia Perakis,et al.  Dynamic Pricing and Inventory Control: Uncertainty and Competition , 2010, Oper. Res..

[12]  R. Yuan,et al.  A class of expansive-type Krasnosel’skii fixed point theorems , 2009 .

[13]  Alexander Shapiro,et al.  Stochastic Approximation approach to Stochastic Programming , 2013 .

[14]  A. Juditsky,et al.  Solving variational inequalities with Stochastic Mirror-Prox algorithm , 2008, 0809.0815.

[15]  Patrick Redont,et al.  A New Class of Alternating Proximal Minimization Algorithms with Costs-to-Move , 2007, SIAM J. Optim..

[16]  Andreas Fischer,et al.  On generalized Nash games and variational inequalities , 2007, Oper. Res. Lett..

[17]  Yurii Nesterov,et al.  Primal-dual subgradient methods for convex problems , 2005, Math. Program..

[18]  Sjur Didrik Flåm,et al.  Newtonian mechanics and Nash Play , 2004, IGTR.

[19]  J. Krawczyk,et al.  Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets , 2004, IEEE Transactions on Power Systems.

[20]  Rodica Brânzei,et al.  Supermodular Games and Potential Games , 2003 .

[21]  Mauro Passacantando,et al.  Nash Equilibria, Variational Inequalities, and Dynamical Systems , 2002 .

[22]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[23]  Stef Tijs,et al.  CONGESTION MODELS AND WEIGHTED BAYESIAN POTENTIAL GAMES , 1997 .

[24]  R. Rubinstein,et al.  On relaxation algorithms in computation of noncooperative equilibria , 1994, IEEE Trans. Autom. Control..

[25]  S. Flåm Paths to constrained Nash equilibria , 1993 .

[26]  T. Basar,et al.  Relaxation techniques and asynchronous algorithms for on-line computation of noncooperative equilibria , 1987, 26th IEEE Conference on Decision and Control.

[27]  Tamer Basar,et al.  Distributed algorithms for the computation of noncooperative equilibria , 1987, Autom..

[28]  George P. Papavassilopoulos,et al.  Iterative techniques for the Nash solution in quadratic games with unknown parameters , 1986 .

[29]  Y. Cherruault,et al.  Méthodes pour la recherche de points de selle , 1973 .

[30]  S. Karamardian The nonlinear complementarity problem with applications, part 2 , 1969 .

[31]  J. Nash,et al.  PARABOLIC EQUATIONS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Calcul diff´erentiel , 2013 .

[33]  Fioravante Patrone,et al.  Stackelberg Problems: Subgame Perfect Equilibria via Tikhonov Regularization , 2006 .

[34]  Arkadi Nemirovski,et al.  Prox-Method with Rate of Convergence O(1/t) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems , 2004, SIAM J. Optim..

[35]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[36]  Stan Uryasev,et al.  Relaxation algorithms to find Nash equilibria with economic applications , 2000 .

[37]  Abraham Neyman,et al.  Correlated equilibrium and potential games , 1997, Int. J. Game Theory.

[38]  L. Shapley,et al.  Potential Games , 1994 .

[39]  Joanna M. Leleno Adjustment process-based approach for computing a Nash-Cournot equilibrium , 1994, Comput. Oper. Res..

[40]  Sjur Didrik Flåm,et al.  Non-Cooperative Games; Methods of Subgradient Projection and Proximal Point , 1992 .

[41]  J. Morgan,et al.  Implementation and numerical results of an approximation method for constrained saddle point problems , 1984 .

[42]  J. Morgan-Sciarrino Algorithme d'approximation interne de problèmes de point de selle avec contraintes via l'optimisation , 1980 .

[43]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[44]  A. Auslender Optimisation : méthodes numériques , 1976 .

[45]  Morgan J. Sciarrino Methode directe de recherche du point de selle d'une fonctlonnelle convexe-concave et application aux problémes variationnels elliptiques avec deux controles antagonistes , 1974 .

[46]  Y. Cherruault Une méthode directe de minimisation et applications , 1968 .

[47]  F. L. Chernous’ko A local variation method for the numerical solution of variational problems , 1965 .

[48]  H. R. Pitt Divergent Series , 1951, Nature.

[49]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .