Nonequilibrium Thermodynamics of Porous Electrodes

We reformulate and extend porous electrode theory for non-ideal active materials, including those capable of phase transformations. Using principles of non-equilibrium thermodynamics, we relate the cell voltage, ionic fluxes, and Faradaic charge-transfer kinetics to the variational electrochemical potentials of ions and electrons. The Butler-Volmer exchange current is consistently expressed in terms of the activities of the reduced, oxidized and transition states, and the activation overpotential is defined relative to the local Nernst potential. We also apply mathematical bounds on effective diffusivity to estimate porosity and tortuosity corrections. The theory is illustrated for a Li-ion battery with active solid particles described by a Cahn-Hilliard phase-field model. Depending on the applied current and porous electrode properties, the dynamics can be limited by electrolyte transport, solid diffusion and phase separation, or intercalation kinetics. In phase-separating porous electrodes, the model predicts narrow reaction fronts, mosaic instabilities and voltage fluctuations at low current, consistent with recent experiments, which could not be described by existing porous electrode models.

[1]  Karma,et al.  Phase-field model of eutectic growth. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[3]  K. Sun,et al.  A mechanism for the improved rate capability of cathodes by lithium phosphate surficial films , 2011 .

[4]  Wei Lai,et al.  Thermodynamics and kinetics of phase transformation in intercalation battery electrodes – phenomenological modeling , 2010 .

[5]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions: I. Capacitance effects☆ , 1963 .

[6]  Ralph E. White,et al.  Governing Equations for Transport in Porous Electrodes , 1997 .

[7]  M. Bazant,et al.  Strongly nonlinear dynamics of electrolytes in large ac voltages. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  J. Newman,et al.  Theoretical Analysis of Current Distribution in Porous Electrodes , 1962 .

[9]  Yet-Ming Chiang,et al.  Spatially Resolved Modeling of Microstructurally Complex Battery Architectures , 2007 .

[10]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[11]  Y. Shibuta,et al.  A phase-field simulation of bridge formation process in a nanometer-scale switch , 2006 .

[12]  Martin Z. Bazant,et al.  Phase-Transformation Wave Dynamics in LiFePO4 , 2008 .

[13]  G. Vineyard Frequency factors and isotope effects in solid state rate processes , 1957 .

[14]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[15]  G. Ceder,et al.  Identification of cathode materials for lithium batteries guided by first-principles calculations , 1998, Nature.

[16]  John Newman,et al.  Desalting by Means of Porous Carbon Electrodes , 1971 .

[17]  Wade Babcock,et al.  Computational materials science , 2004 .

[18]  Journal of Chemical Physics , 1932, Nature.

[19]  Q. Horn,et al.  The Effect of Microstructure on the Galvanostatic Discharge of Graphite Anode Electrodes in LiCoO2-Based Rocking-Chair Rechargeable Batteries , 2009 .

[20]  Stefan Pischinger,et al.  Percolation–tunneling modeling for the study of the electric conductivity in LiFePO4 based Li-ion battery cathodes , 2011 .

[21]  G. Milton The Theory of Composites , 2002 .

[22]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[23]  H. Assadi Phase-field modelling of electro-deoxidation in molten salt , 2006 .

[24]  John W. Cahn,et al.  On Spinodal Decomposition , 1961 .

[25]  Louis G. Birta,et al.  Modelling and Simulation , 2013, Simulation Foundations, Methods and Applications.

[26]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[27]  M. Velarde Advances in Colloid and Interface Science , 2014 .

[28]  Rahul Malik,et al.  Particle size dependence of the ionic diffusivity. , 2010, Nano letters.

[29]  O. Ksenzhek Macrokinetics of processes on porous electrodes , 1964 .

[30]  M. Bazant,et al.  New Journal of Physics Nonlinear electrokinetics at large voltages , 2009 .

[31]  Sun-Yuan Tsay,et al.  Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol–gel route , 2004 .

[32]  Keld West,et al.  Modeling of Porous Insertion Electrodes with Liquid Electrolyte , 1982 .

[33]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[34]  Joel H. Hildebrand,et al.  SOLUBILITY. XII. REGULAR SOLUTIONS1 , 1929 .

[35]  Wolfgang Dreyer,et al.  The behavior of a many-particle electrode in a lithium-ion battery , 2011 .

[36]  Robert W. Balluffi,et al.  Kinetics Of Materials , 2005 .

[37]  P. Prosini,et al.  Fitting of the voltage–Li+ insertion curve of LiFePO4 , 2009 .

[38]  Charles W. Tobias,et al.  The influence of electrode reaction kinetics on the polarization of flooded porous electrodes , 1965 .

[39]  E. Grens On the assumptions underlying theoretical models for flooded porous electrodes , 1970 .

[40]  J. Newman,et al.  Transient behaviour of porous electrodes with high exchange current densities , 1980 .

[41]  S. Rangarajan Theory of flooded porous electrodes , 1969 .

[42]  Piercarlo Mustarelli,et al.  7Li and 19F diffusion coefficients and thermal properties of non-aqueous electrolyte solutions for rechargeable lithium batteries , 1999 .

[43]  Damian Burch,et al.  Intercalation dynamics in lithium-ion batteries , 2009 .

[44]  R. Trivedi,et al.  Solidification microstructures: recent developments, future directions , 2000 .

[45]  P. M. Biesheuvel,et al.  Water desalination using capacitive deionization with microporous carbon electrodes. , 2012, ACS applied materials & interfaces.

[46]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[47]  David Dussault,et al.  Phase-field modeling of transport-limited electrolysis in solid and liquid states , 2007 .

[48]  James A. Warren,et al.  The phase-field method: simulation of alloy dendritic solidification during recalescence , 1996 .

[49]  Efthimios Kaxiras,et al.  Atomic and Electronic Structure of Solids: Elements of thermodynamics , 2003 .

[50]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[51]  R. Huggins Advanced Batteries: Materials Science Aspects , 2008 .

[52]  Martin Z. Bazant,et al.  Diffuse Charge Effects in Fuel Cell Membranes , 2009 .

[53]  J A Warren,et al.  Phase field modeling of electrochemistry. I. Equilibrium. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Rudolph A. Marcus,et al.  Electron transfer reactions in chemistry. Theory and experiment , 1993 .

[55]  K. Zaghib,et al.  Quantifying tortuosity in porous Li-ion battery materials , 2009 .

[56]  Muhammad Sahimi,et al.  Linear transport and optical properties , 2003 .

[57]  Joachim Maier,et al.  Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications , 2001 .

[58]  J. Cahn Coherent fluctuations and nucleation in isotropic solids , 1962 .

[59]  S. Torquato Random Heterogeneous Materials , 2002 .

[60]  M. Bazant Phase-Field Theory of Ion Intercalation Kinetics , 2012 .

[61]  P. M. Biesheuvel,et al.  Theory of membrane capacitive deionization including the effect of the electrode pore space. , 2011, Journal of colloid and interface science.

[62]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[63]  E. Bruce Nauman,et al.  Nonlinear diffusion and phase separation , 2001 .

[64]  R. Williams,et al.  Journal of American Chemical Society , 1979 .

[65]  Karim Zaghib,et al.  Understanding Rate-Limiting Mechanisms in LiFePO4 Cathodes for Li-Ion Batteries , 2011 .

[66]  Stefan Pischinger,et al.  Quantifying the effects of strains on the conductivity and porosity of LiFePO4 based Li-ion composite cathodes using a multi-scale approach , 2011 .

[67]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[68]  John W. Cahn,et al.  Free Energy of a Nonuniform System. II. Thermodynamic Basis , 1959 .

[69]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[70]  P. M. Biesheuvel,et al.  Nonlinear dynamics of capacitive charging and desalination by porous electrodes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[72]  Keld West,et al.  Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources , 1979 .

[73]  M. Bazant,et al.  Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  Damian Burch,et al.  Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. , 2009, Nano letters.

[75]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  M. Bazant,et al.  Nonlinear electrokinetics at large voltages , 2009 .

[77]  A. Penzkofer,et al.  CHEMICAL PHYSICS LETTERS , 1976 .

[78]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[79]  E. Kaxiras Atomic and electronic structure of solids , 2003 .

[80]  Milo R. Dorr,et al.  Anisotropic Phase Boundary Morphology in Nanoscale Olivine Electrode Particles , 2011 .

[81]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[82]  Eugene E. Petersen,et al.  Diffusion in a pore of varying cross section , 1958 .

[83]  Sergei V. Kalinin,et al.  Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. , 2010, Nature nanotechnology.

[84]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[85]  城塚 正,et al.  Chemical Engineering Scienceについて , 1962 .

[86]  Nathalie Ravet,et al.  Electroactivity of natural and synthetic triphylite , 2001 .

[87]  Linda F. Nazar,et al.  Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates , 2001 .

[88]  A. Kornyshev,et al.  Optimized Structure of Nanoporous Carbon-Based Double-Layer Capacitors , 2005 .

[89]  V. S. Bagotzky,et al.  Steady-state operation of a porous electrode polarized from one side with diffusion supply of liquid reactants from both sides☆ , 1967 .

[90]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[91]  Rainer Heintzmann,et al.  Superresolution Multidimensional Imaging with Structured Illumination Microscopy , 2013 .

[92]  Jens Ulstrup,et al.  Electron Transfer in Chemistry and Biology: An Introduction to the Theory , 1999 .

[93]  P. M. Biesheuvel,et al.  Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes , 2012, Russian Journal of Electrochemistry.

[94]  P. M. Biesheuvel,et al.  Diffuse charge and Faradaic reactions in porous electrodes. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  David R. Clarke,et al.  Annual review of materials research , 2001 .

[96]  Rafael Reif,et al.  Electrochemical and Solid-Sates Letters , 1999 .

[97]  T. Yamazaki,et al.  Correction to Nanoparticles of Fullerene C60 from Engineenng of Antiquity [The Journal of Physical Chemistry C , 2011 .

[98]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[99]  John W. Cahn,et al.  On spinodal decomposition in cubic crystals , 1962 .

[100]  M. Bazant,et al.  Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. , 2009, Advances in colloid and interface science.

[101]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[102]  W. Craig Carter,et al.  Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries , 2005 .

[103]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[104]  Ruhul Amin,et al.  Phase boundary propagation in large LiFePO4 single crystals on delithiation. , 2012, Journal of the American Chemical Society.

[105]  Sossina M. Haile,et al.  Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria , 2005 .

[106]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[107]  Richard D. Braatz,et al.  Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective , 2010 .

[108]  Metals Minerals,et al.  Metallurgical and materials transactions. A, Physical metallurgy and materials science , 1994 .

[109]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[110]  S. Waldvogel Electrochemical Science and Technology , 2013 .

[111]  John Newman,et al.  Double‐Layer Capacity Determination of Porous Electrodes , 1975 .

[112]  M. Bazant,et al.  Steric effects on ac electro-osmosis in dilute electrolytes. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[113]  Krishna Garikipati,et al.  The Role of Coherency Strains on Phase Stability in LixFePO4: Needle Crystallites Minimize Coherency Strain and Overpotential , 2009 .

[114]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[115]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[116]  Dongyuan Zhao,et al.  Journal of Colloid and Interface Science. Editorial. , 2014, Journal of colloid and interface science.

[117]  Volker Schmidt,et al.  Stochastic simulation model for the 3D morphology of composite materials in Li–ion batteries , 2011 .

[118]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[119]  Eduardo F. Marques,et al.  Advances in Colloid and Interface Science , 2009 .

[120]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[121]  R. P. Bell,et al.  Modern Electrochemistry , 1966, Nature.

[122]  W. Craig Carter,et al.  Thermodynamically consistent variational principles with applications to electrically and magnetically active systems , 2004 .

[123]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[124]  J A Warren,et al.  Phase field modeling of electrochemistry. II. Kinetics. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[125]  P. M. Biesheuvel,et al.  Sedimentation–diffusion equilibrium of binary mixtures of charged colloids including volume effects , 2005 .

[126]  Wei Lai,et al.  Electrochemical modeling of single particle intercalation battery materials with different thermodynamics , 2011 .

[127]  井上 達雄 Computational Materials Science, U. Landman and R. Nieminen編, Elsevier Science Publishers発行, B5判, 発刊, 1992年10月第1巻第1号刊, Dfl. 368,00 (US$ 221.50) , 1993 .

[128]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[129]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[130]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[131]  Yuki Yamada,et al.  Kinetics of Nucleation and Growth in Two-Phase Electrochemical Reaction of LixFePO4 , 2012 .

[132]  W. Marsden I and J , 2012 .

[133]  Wei Lai,et al.  Mathematical Modeling of Porous Battery Electrodes-Revisit of Newman's Model , 2011 .

[134]  A. Kornyshev,et al.  Double layer in ionic liquids: overscreening versus crowding. , 2010, Physical review letters.

[135]  Chunsheng Wang,et al.  Galvanostatic Intermittent Titration Technique for Phase-Transformation Electrodes , 2010 .

[136]  Charles W. Monroe,et al.  Direct in situ measurements of Li transport in Li-ion battery negative electrodes , 2009 .

[137]  Zhangxin Chen,et al.  Critical review of the impact of tortuosity on diffusion , 2007 .

[138]  Ralph E. White,et al.  Mathematical modeling of secondary lithium batteries , 2000 .

[139]  Robert W. Balluffi,et al.  Kinetics of Materials: Balluffi/Kinetics , 2005 .

[140]  J. Euler,et al.  Stromverteilung in porösen elektroden , 1960 .

[141]  P. M. Biesheuvel,et al.  Counterion volume effects in mixed electrical double layers. , 2007, Journal of colloid and interface science.

[142]  Gerbrand Ceder,et al.  Evaluation of interfacial excess contributions in different phase-field models for elastically inhomogeneous systems , 2013 .

[143]  Nigel P. Brandon,et al.  Local Tortuosity Inhomogeneities in a Lithium Battery Composite Electrode , 2011 .

[144]  Steven Dargaville,et al.  Predicting Active Material Utilization in LiFePO4 Electrodes Using a Multiscale Mathematical Model , 2010 .

[145]  Gerbrand Ceder,et al.  Electrochemical modeling of intercalation processes with phase field models , 2004 .

[146]  G. Schmid The Nature of Nanotechnology , 2010 .

[147]  Ralph E. White,et al.  A Mathematical Model for a Lithium–Sulfur Cell , 2008 .