Compressed Sensing with Applications in Wireless Networks

Many natural signals possess only a few degrees of freedom. For instance, the occupied radio spectrum may be intermittently concentrated to only a few frequency bands of the system bandwidth. This special structural feature – signal sparsity – is conducive in designing efficient signal processing techniques for wireless networks. In particular, the signal sparsity can be leveraged by the recently emerged joint sampling and compression paradigm, compressed sensing (CS). This monograph reviews several recent CS advancements in wireless networks with an aim to improve the quality of signal reconstruction or detection while reducing the use of energy, radio, and computation resources. The monograph covers a diversity of compressive data reconstruction, gathering, and detection frameworks in cellular, cognitive, and wireless sensor networking systems. The monograph first gives an overview of the principles of CS for the readers unfamiliar with the topic. For the researchers knowledgeable in CS, the monograph provides in-depth reviews of several interesting CS advancements in designing tailored CS reconstruction techniques for wireless applications. The monograph can serve as a basis for the researchers intended to start working in the field, and altogether, lays a foundation for further research in the covered areas.

[1]  Yonina C. Eldar,et al.  Single Letter Formulas for Quantized Compressed Sensing with Gaussian Codebooks , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[2]  Mikael Skoglund,et al.  Distributed Quantization for Measurement of Correlated Sparse Sources over Noisy Channels , 2014, ArXiv.

[3]  Georgios B. Giannakis,et al.  Advances in Spectrum Sensing and Cross-Layer Design for Cognitive Radio Networks , 2014 .

[4]  H. Zou,et al.  One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.

[5]  Jack K. Wolf,et al.  Transmission of noisy information to a noisy receiver with minimum distortion , 1970, IEEE Trans. Inf. Theory.

[6]  Bernard Fino,et al.  Multiuser detection: , 1999, Ann. des Télécommunications.

[7]  Zixiang Xiong,et al.  Distributed source coding for sensor networks , 2004, IEEE Signal Processing Magazine.

[8]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[9]  E. Candes,et al.  11-magic : Recovery of sparse signals via convex programming , 2005 .

[10]  R. Gray,et al.  Vector quantization , 1984, IEEE ASSP Magazine.

[11]  Chao Tian,et al.  Remote Vector Gaussian Source Coding With Decoder Side Information Under Mutual Information and Distortion Constraints , 2009, IEEE Transactions on Information Theory.

[12]  Namrata Vaswani,et al.  Kalman filtered Compressed Sensing , 2008, 2008 15th IEEE International Conference on Image Processing.

[13]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[14]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[15]  Georgios B. Giannakis,et al.  Weighted and structured sparse total least-squares for perturbed compressive sampling , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[16]  Jean-Jacques Fuchs,et al.  Multipath time-delay detection and estimation , 1999, IEEE Trans. Signal Process..

[17]  Laurent Jacques,et al.  Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors , 2011, IEEE Transactions on Information Theory.

[18]  Mohsen Guizani,et al.  Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications , 2015, IEEE Communications Surveys & Tutorials.

[19]  Jean-Christophe Pesquet,et al.  On the Uniform Quantization of a Class of Sparse Sources , 2009, IEEE Transactions on Information Theory.

[20]  Mohammad Ali Akhaee,et al.  Obstacle mapping in wireless sensor networks via minimum number of measurements , 2016, IET Signal Process..

[21]  Michael Fleming,et al.  Network vector quantization , 2001, IEEE Transactions on Information Theory.

[22]  Mikael Skoglund,et al.  Distributed quantization for compressed sensing , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[23]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[24]  Marian Codreanu,et al.  Compressed acquisition and progressive reconstruction of multi-dimensional correlated data in wireless sensor networks , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[25]  Thomas Strohmer,et al.  General Deviants: An Analysis of Perturbations in Compressed Sensing , 2009, IEEE Journal of Selected Topics in Signal Processing.

[26]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[27]  Marc Teboulle,et al.  Finding a Global Optimal Solution for a Quadratically Constrained Fractional Quadratic Problem with Applications to the Regularized Total Least Squares , 2006, SIAM J. Matrix Anal. Appl..

[28]  Milica Stojanovic,et al.  Random Access Compressed Sensing for Energy-Efficient Underwater Sensor Networks , 2011, IEEE Journal on Selected Areas in Communications.

[29]  Georgios B. Giannakis,et al.  Space-time coding for broadband wireless communications , 2003, Wirel. Commun. Mob. Comput..

[30]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[31]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[32]  Laurent Jacques,et al.  Dequantizing Compressed Sensing: When Oversampling and Non-Gaussian Constraints Combine , 2009, IEEE Transactions on Information Theory.

[33]  Galen Reeves,et al.  The Sampling Rate-Distortion Tradeoff for Sparsity Pattern Recovery in Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[34]  Mikael Skoglund,et al.  Distributed quantization over noisy channels , 2009, IEEE Transactions on Communications.

[35]  Richard E. Blahut,et al.  Computation of channel capacity and rate-distortion functions , 1972, IEEE Trans. Inf. Theory.

[36]  Pierre Vandergheynst,et al.  Compressed Sensing for Real-Time Energy-Efficient ECG Compression on Wireless Body Sensor Nodes , 2011, IEEE Transactions on Biomedical Engineering.

[37]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[38]  Zixiang Xiong,et al.  Computing the channel capacity and rate-distortion function with two-sided state information , 2005, IEEE Transactions on Information Theory.

[39]  David J. Sakrison,et al.  Source encoding in the presence of random disturbance (Corresp.) , 1967, IEEE Trans. Inf. Theory.

[40]  Kannan Ramchandran,et al.  Distributed source coding using syndromes (DISCUS): design and construction , 2003, IEEE Trans. Inf. Theory.

[41]  Gonzalo Mateos,et al.  Group-Lasso on Splines for Spectrum Cartography , 2010, IEEE Transactions on Signal Processing.

[42]  Aaron D. Wyner,et al.  Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959. , 1993 .

[43]  Dean P. Foster,et al.  The risk inflation criterion for multiple regression , 1994 .

[44]  Boris Tsybakov,et al.  Information transmission with additional noise , 1962, IRE Trans. Inf. Theory.

[45]  Sundeep Rangan,et al.  A sparsity detection framework for on-off random access channels , 2009, 2009 IEEE International Symposium on Information Theory.

[46]  A. Robert Calderbank,et al.  Sensitivity to Basis Mismatch in Compressed Sensing , 2011, IEEE Trans. Signal Process..

[47]  S. Mallat A wavelet tour of signal processing , 1998 .

[48]  Morteza Mardani,et al.  Recovery of Low-Rank Plus Compressed Sparse Matrices With Application to Unveiling Traffic Anomalies , 2012, IEEE Transactions on Information Theory.

[49]  Yonina C. Eldar,et al.  Xampling: Analog to digital at sub-Nyquist rates , 2009, IET Circuits Devices Syst..

[50]  Zhi-Quan Luo,et al.  A Stochastic Successive Minimization Method for Nonsmooth Nonconvex Optimization with Applications to Transceiver Design in Wireless Communication Networks , 2013, Mathematical Programming.

[51]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[52]  Vincent Yan Fu Tan,et al.  Wireless Compressive Sensing for Energy Harvesting Sensor Nodes , 2012, IEEE Transactions on Signal Processing.

[53]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[54]  Neal Patwari,et al.  See-Through Walls: Motion Tracking Using Variance-Based Radio Tomography Networks , 2011, IEEE Transactions on Mobile Computing.

[55]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[56]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[57]  Ainslie,et al.  CORRELATION MODEL FOR SHADOW FADING IN MOBILE RADIO SYSTEMS , 2004 .

[58]  G.B. Giannakis,et al.  Distributed compression-estimation using wireless sensor networks , 2006, IEEE Signal Processing Magazine.

[59]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[60]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[61]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[62]  H. Kushner,et al.  Stochastic Approximation and Recursive Algorithms and Applications , 2003 .

[63]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[64]  R. Gray,et al.  A new class of lower bounds to information rates of stationary sources via conditional rate-distortion functions , 1973, IEEE Trans. Inf. Theory.

[65]  Martin Vetterli,et al.  Compressed sensing of streaming data , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[66]  ROGER C. WOOD,et al.  On optimum quantization , 1969, IEEE Trans. Inf. Theory.

[67]  Miguel R. D. Rodrigues,et al.  Compressed Sensing With Prior Information: Strategies, Geometry, and Bounds , 2017, IEEE Transactions on Information Theory.

[68]  Terrence L. Fine,et al.  Properties of an optimum digital system and applications , 1964, IEEE Trans. Inf. Theory.

[69]  Fortunato Santucci,et al.  A general correlation model for shadow fading in mobile radio systems , 2002, IEEE Communications Letters.

[70]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[71]  K. Lange,et al.  Coordinate descent algorithms for lasso penalized regression , 2008, 0803.3876.

[72]  Lida Xu,et al.  Compressed Sensing Signal and Data Acquisition in Wireless Sensor Networks and Internet of Things , 2013, IEEE Transactions on Industrial Informatics.

[73]  Sneha A. Dalvi,et al.  Internet of Things for Smart Cities , 2017 .

[74]  Enrico Magli,et al.  Lossy compression of distributed sparse sources: A practical scheme , 2011, 2011 19th European Signal Processing Conference.

[75]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[76]  Wotao Yin,et al.  Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[77]  Richard G. Baraniuk,et al.  Kronecker Compressive Sensing , 2012, IEEE Transactions on Image Processing.

[78]  Cheng Chang,et al.  On the rate distortion function of Bernoulli Gaussian sequences , 2009, 2010 IEEE International Symposium on Information Theory.

[79]  I. Stancu-Minasian Nonlinear Fractional Programming , 1997 .

[80]  Marian Codreanu,et al.  Rate-distortion lower bound for compressed sensing via conditional remote source coding , 2016, 2016 IEEE Information Theory Workshop (ITW).

[81]  Jacob Ziv,et al.  On universal quantization , 1985, IEEE Trans. Inf. Theory.

[82]  Gongguo Tang,et al.  Performance Analysis for Sparse Support Recovery , 2009, IEEE Transactions on Information Theory.

[83]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[84]  Brian M. Sadler,et al.  Semi-blind sparse channel estimation with constant modulus symbols , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[85]  Georgios B. Giannakis,et al.  Sparsity-Aware Estimation of CDMA System Parameters , 2009, 2009 IEEE 10th Workshop on Signal Processing Advances in Wireless Communications.

[86]  H. Akaike A new look at the statistical model identification , 1974 .

[87]  Kenneth E. Barner,et al.  Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements , 2009, 2009 43rd Annual Conference on Information Sciences and Systems.

[88]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[89]  Georgios B. Giannakis,et al.  Sensor-Centric Data Reduction for Estimation With WSNs via Censoring and Quantization , 2012, IEEE Transactions on Signal Processing.

[90]  Martin J. Wainwright,et al.  Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$ -Constrained Quadratic Programming (Lasso) , 2009, IEEE Transactions on Information Theory.

[91]  Alfred O. Hero,et al.  Sparse LMS for system identification , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[92]  Florent Krzakala,et al.  Performance Limits for Noisy Multimeasurement Vector Problems , 2016, IEEE Transactions on Signal Processing.

[93]  Michele Zorzi,et al.  Sensing, Compression, and Recovery for WSNs: Sparse Signal Modeling and Monitoring Framework , 2012, IEEE Transactions on Wireless Communications.

[94]  Philip Schniter,et al.  Dynamic Compressive Sensing of Time-Varying Signals Via Approximate Message Passing , 2012, IEEE Transactions on Signal Processing.

[95]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[96]  Jun Sun,et al.  Compressive data gathering for large-scale wireless sensor networks , 2009, MobiCom '09.

[97]  Müjdat Çetin,et al.  A nonquadratic regularization-based technique for joint SAR imaging and model error correction , 2009, Defense + Commercial Sensing.

[98]  Bhaskar D. Rao,et al.  PDF optimized parametric vector quantization of speech line spectral frequencies , 2003, IEEE Trans. Speech Audio Process..

[99]  Robert D. Nowak,et al.  Joint Source–Channel Communication for Distributed Estimation in Sensor Networks , 2007, IEEE Transactions on Information Theory.

[100]  Marian Codreanu,et al.  Distributed variable-rate quantized compressed sensing in wireless sensor networks , 2016, 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[101]  Stephen P. Boyd,et al.  Compressed Sensing With Quantized Measurements , 2010, IEEE Signal Processing Letters.

[102]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[103]  E.J. Candes Compressive Sampling , 2022 .

[104]  Robert M. Gray,et al.  High-resolution quantization theory and the vector quantizer advantage , 1989, IEEE Trans. Inf. Theory.

[105]  Marian Codreanu,et al.  A Bayesian Approach for Online Recovery of Streaming Signals From Compressive Measurements , 2017, IEEE Transactions on Signal Processing.

[106]  Toby Berger,et al.  Lossy Source Coding , 1998, IEEE Trans. Inf. Theory.

[107]  Yonina C. Eldar,et al.  Distortion Rate Function of Sub-Nyquist Sampled Gaussian Sources , 2016, IEEE Trans. Inf. Theory.

[108]  Andrea J. Goldsmith,et al.  The indirect rate-distortion function of a binary i.i.d source , 2015, 2015 IEEE Information Theory Workshop - Fall (ITW).

[109]  Roy Timo,et al.  A lower bound for the rate-distortion function of spike sources that is asymptotically tight , 2016, 2016 IEEE Information Theory Workshop (ITW).

[110]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[111]  Giuseppe Caire,et al.  On maximum-likelihood detection and the search for the closest lattice point , 2003, IEEE Trans. Inf. Theory.

[112]  Amirpasha Shirazinia,et al.  Source and Channel Coding for Compressed Sensing and Control , 2014 .

[113]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[114]  Michele Zorzi,et al.  Modeling and Generation of Space-Time Correlated Signals for Sensor Network Fields , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[115]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[116]  Hans S. Witsenhausen,et al.  Indirect rate distortion problems , 1980, IEEE Trans. Inf. Theory.

[117]  Marian Codreanu,et al.  Practical Compression Methods for Quantized Compressed Sensing , 2019, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[118]  R. B. Deshmukh,et al.  A Systematic Review of Compressive Sensing: Concepts, Implementations and Applications , 2018, IEEE Access.

[119]  Björn E. Ottersten,et al.  Weighted subspace fitting for general array error models , 1998, IEEE Trans. Signal Process..

[120]  C. Tellambura,et al.  An efficient generalized sphere decoder for rank-deficient MIMO systems , 2004 .

[121]  Anders P. Eriksson,et al.  Efficient computation of robust low-rank matrix approximations in the presence of missing data using the L1 norm , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[122]  Cristiano Jacques Miosso,et al.  Compressive Sensing Reconstruction With Prior Information by Iteratively Reweighted Least-Squares , 2009, IEEE Transactions on Signal Processing.

[123]  Vahid Tarokh,et al.  Shannon-Theoretic Limits on Noisy Compressive Sampling , 2007, IEEE Transactions on Information Theory.

[124]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[125]  Geert Leus,et al.  Detection of sparse signals under finite-alphabet constraints , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[126]  Catherine Rosenberg,et al.  Compressed Data Aggregation: Energy-Efficient and High-Fidelity Data Collection , 2013, IEEE/ACM Transactions on Networking.

[127]  Yonina C. Eldar,et al.  Xampling: Compressed Sensing of Analog Signals , 2011, Compressed Sensing.

[128]  Michael Gastpar,et al.  Distributed Source Coding - Theory, Algorithms and Applications , 2009 .

[129]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[130]  G. Golub,et al.  Regularized Total Least Squares Based on Quadratic Eigenvalue Problem Solvers , 2004 .

[131]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[132]  Martin Vetterli,et al.  Rate Distortion Behavior of Sparse Sources , 2012, IEEE Transactions on Information Theory.

[133]  R.G. Baraniuk,et al.  Universal distributed sensing via random projections , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[134]  Weiyu Xu,et al.  Analyzing Weighted $\ell_1$ Minimization for Sparse Recovery With Nonuniform Sparse Models , 2010, IEEE Transactions on Signal Processing.

[135]  V.K. Goyal,et al.  Compressive Sampling and Lossy Compression , 2008, IEEE Signal Processing Magazine.

[136]  Robert D. Nowak,et al.  Signal Reconstruction From Noisy Random Projections , 2006, IEEE Transactions on Information Theory.

[137]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[138]  Bhaskar D. Rao,et al.  Sparse solutions to linear inverse problems with multiple measurement vectors , 2005, IEEE Transactions on Signal Processing.

[139]  Georgios B. Giannakis,et al.  Online Adaptive Estimation of Sparse Signals: Where RLS Meets the $\ell_1$ -Norm , 2010, IEEE Transactions on Signal Processing.

[140]  Yonina C. Eldar,et al.  Subspace Recovery From Structured Union of Subspaces , 2013, IEEE Transactions on Information Theory.

[141]  Weiyu Xu,et al.  Fundamental thresholds in compressed sensing: a high-dimensional geometry approach , 2012, Compressed Sensing.

[142]  Shaojie Tang,et al.  Data gathering in wireless sensor networks through intelligent compressive sensing , 2012, 2012 Proceedings IEEE INFOCOM.

[143]  Shengli Zhou,et al.  Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing , 2009, OCEANS 2009-EUROPE.

[144]  Chein-I Chang,et al.  On calculating the capacity of an infinite-input finite (infinite)-output channel , 1988, IEEE Trans. Inf. Theory.

[145]  Wei Lu,et al.  Recursive Reconstruction of Sparse Signal Sequences , 2014 .

[146]  Volkan Cevher,et al.  Distributed target localization via spatial sparsity , 2008, 2008 16th European Signal Processing Conference.

[147]  Marian Codreanu,et al.  Signal Reconstruction Performance Under Quantized Noisy Compressed Sensing , 2019, 2019 Data Compression Conference (DCC).

[148]  Pramod K. Varshney,et al.  OMP Based Joint Sparsity Pattern Recovery Under Communication Constraints , 2013, IEEE Transactions on Signal Processing.

[149]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[150]  Stephen P. Boyd,et al.  Geometric programming duals of channel capacity and rate distortion , 2004, IEEE Transactions on Information Theory.

[151]  Yonina C. Eldar,et al.  Xampling: Signal Acquisition and Processing in Union of Subspaces , 2009, IEEE Transactions on Signal Processing.

[152]  Yonina C. Eldar,et al.  Robust Recovery of Signals From a Structured Union of Subspaces , 2008, IEEE Transactions on Information Theory.

[153]  Herbert Gish,et al.  Asymptotically efficient quantizing , 1968, IEEE Trans. Inf. Theory.

[154]  Richard G. Baraniuk,et al.  Bayesian Compressive Sensing Via Belief Propagation , 2008, IEEE Transactions on Signal Processing.

[155]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[156]  Mikael Skoglund,et al.  Analysis-by-Synthesis Quantization for Compressed Sensing Measurements , 2013, IEEE Transactions on Signal Processing.

[157]  Kenneth Rose,et al.  A mapping approach to rate-distortion computation and analysis , 1994, IEEE Trans. Inf. Theory.

[158]  Deanna Needell,et al.  Noisy signal recovery via iterative reweighted L1-minimization , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[159]  RobertF Brown,et al.  A topological introduction to nonlinear analysis , 1993 .

[160]  Jean-Jacques Fuchs,et al.  On the application of the global matched filter to DOA estimation with uniform circular arrays , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[161]  Lawrence Carin,et al.  Rate-distortion bound for joint compression and classification with application to multiaspect scattering , 2003, IEEE Sensors Journal.

[162]  Marian Codreanu,et al.  Channel-robust compressed sensing via vector pre-quantization in wireless sensor networks , 2015, 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[163]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[164]  Joel Max,et al.  Quantizing for minimum distortion , 1960, IRE Trans. Inf. Theory.

[165]  Christodoulos A. Floudas,et al.  Computational Experience with a New Class of Convex Underestimators: Box-constrained NLP Problems , 2004, J. Glob. Optim..

[166]  J. Cardinal,et al.  Joint entropy-constrained multiterminal quantization , 2002, Proceedings IEEE International Symposium on Information Theory,.

[167]  R. Ladner Entropy-constrained Vector Quantization , 2000 .

[168]  Shiqian Ma,et al.  An alternating direction method for total variation denoising , 2011, Optim. Methods Softw..

[169]  Xuan Kong,et al.  Adaptive Signal Processing Algorithms: Stability and Performance , 1994 .

[170]  Allen Gersho,et al.  On the structure of vector quantizers , 1982, IEEE Trans. Inf. Theory.

[171]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[172]  J. Berger,et al.  Objective Bayesian Analysis of Spatially Correlated Data , 2001 .

[173]  Neal Patwari,et al.  Radio Tomographic Imaging with Wireless Networks , 2010, IEEE Transactions on Mobile Computing.

[174]  Nikos D. Sidiropoulos,et al.  Frugal Sensing: Wideband Power Spectrum Sensing From Few Bits , 2013, IEEE Transactions on Signal Processing.

[175]  Namrata Vaswani,et al.  LS-CS-Residual (LS-CS): Compressive Sensing on Least Squares Residual , 2009, IEEE Transactions on Signal Processing.

[176]  Reinaldo A. Valenzuela Ray tracing prediction of indoor radio propagation , 1994, 5th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Wireless Networks - Catching the Mobile Future..

[177]  Arvind Ganesh,et al.  Fast Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix , 2009 .

[178]  Maurizio Bocca,et al.  Enhancing the accuracy of radio tomographic imaging using channel diversity , 2012, 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2012).

[179]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[180]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[181]  Marian Codreanu,et al.  Sequential Compressed Sensing With Progressive Signal Reconstruction in Wireless Sensor Networks , 2015, IEEE Transactions on Wireless Communications.

[182]  R. Dennis Cook,et al.  Cross-Validation of Regression Models , 1984 .

[183]  Luca Benini,et al.  Distributed Compressive Sampling for Lifetime Optimization in Dense Wireless Sensor Networks , 2012, IEEE Transactions on Industrial Informatics.

[184]  Marian Codreanu,et al.  Rate-Distortion Performance of Lossy Compressed Sensing of Sparse Sources , 2018, IEEE Transactions on Communications.

[185]  H. Nyquist,et al.  Certain Topics in Telegraph Transmission Theory , 1928, Transactions of the American Institute of Electrical Engineers.

[186]  Wei Lu,et al.  Regularized Modified BPDN for Noisy Sparse Reconstruction With Partial Erroneous Support and Signal Value Knowledge , 2010, IEEE Transactions on Signal Processing.

[187]  David P. Wipf,et al.  Iterative Reweighted 1 and 2 Methods for Finding Sparse Solutions , 2010, IEEE J. Sel. Top. Signal Process..

[188]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[189]  Neal Patwari,et al.  Correlated link shadow fading in multi-hop wireless networks , 2008, IEEE Transactions on Wireless Communications.

[190]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[191]  Thomas M. Cover,et al.  Network Information Theory , 2001 .

[192]  Enrico Magli,et al.  Operational Rate-Distortion Performance of Single-Source and Distributed Compressed Sensing , 2014, IEEE Transactions on Communications.

[193]  Franz Hlawatsch,et al.  A compressed sensing technique for OFDM channel estimation in mobile environments: Exploiting channel sparsity for reducing pilots , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[194]  Yonina C. Eldar,et al.  Analog-to-Digital Compression: A New Paradigm for Converting Signals to Bits , 2018, IEEE Signal Processing Magazine.

[195]  David L. Neuhoff,et al.  Process definitions of distortion-rate functions and source coding theorems , 1975, IEEE Trans. Inf. Theory.

[196]  Wei Lu,et al.  Modified-CS: Modifying compressive sensing for problems with partially known support , 2009, 2009 IEEE International Symposium on Information Theory.

[197]  T. Blumensath,et al.  Iterative Thresholding for Sparse Approximations , 2008 .

[198]  Louis L. Scharf,et al.  Matched subspace detectors , 1994, IEEE Trans. Signal Process..

[199]  Jie Liu,et al.  Promoting Access to White Rose Research Papers Low-complexity Rls Algorithms Using Dichotomous Coordinate Descent Iterations , 2022 .

[200]  Gonzalo Mateos,et al.  Stochastic Approximation vis-a-vis Online Learning for Big Data Analytics [Lecture Notes] , 2014, IEEE Signal Processing Magazine.

[201]  Dmitry M. Malioutov,et al.  Sequential Compressed Sensing , 2010, IEEE Journal of Selected Topics in Signal Processing.

[202]  Qing Ling,et al.  Decentralized Sparse Signal Recovery for Compressive Sleeping Wireless Sensor Networks , 2010, IEEE Transactions on Signal Processing.

[203]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[204]  Ioannis D. Schizas,et al.  Distortion-Rate Bounds for Distributed Estimation Using Wireless Sensor Networks , 2008, EURASIP J. Adv. Signal Process..

[205]  Yonina C. Eldar,et al.  Sub-Nyquist Sampling , 2011, IEEE Signal Processing Magazine.

[206]  Georgios B. Giannakis,et al.  Cooperative Spectrum Sensing for Cognitive Radios Using Kriged Kalman Filtering , 2009, IEEE Journal of Selected Topics in Signal Processing.

[207]  Zixiang Xiong,et al.  Slepian-Wolf Coded Nested Lattice Quantization for Wyner-Ziv Coding: High-Rate Performance Analysis and Code Design , 2006, IEEE Transactions on Information Theory.

[208]  Piotr Indyk,et al.  Sparse Recovery Using Sparse Random Matrices , 2010, LATIN.

[209]  Tamás Linder,et al.  On source coding with side-information-dependent distortion measures , 2000, IEEE Trans. Inf. Theory.

[210]  Michelle Effros,et al.  Lossless and near-lossless source coding for multiple access networks , 2003, IEEE Trans. Inf. Theory.

[211]  Justin Ziniel,et al.  Fast bayesian matching pursuit , 2008, 2008 Information Theory and Applications Workshop.

[212]  Philip Schniter,et al.  Tracking and smoothing of time-varying sparse signals via approximate belief propagation , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[213]  Mathukumalli Vidyasagar,et al.  An Introduction to Compressed Sensing , 2019 .

[214]  Olgica Milenkovic,et al.  Information Theoretical and Algorithmic Approaches to Quantized Compressive Sensing , 2011, IEEE Transactions on Communications.

[215]  Suguru Arimoto,et al.  An algorithm for computing the capacity of arbitrary discrete memoryless channels , 1972, IEEE Trans. Inf. Theory.

[216]  Glen G. Langdon,et al.  Arithmetic Coding , 1979 .

[217]  Justin K. Romberg,et al.  Sparse Recovery of Streaming Signals Using $\ell_1$-Homotopy , 2013, IEEE Transactions on Signal Processing.

[218]  Luca Benini,et al.  Compressive Sensing Optimization for Signal Ensembles in WSNs , 2014, IEEE Transactions on Industrial Informatics.

[219]  Michael Unser,et al.  Approximate Message Passing With Consistent Parameter Estimation and Applications to Sparse Learning , 2012, IEEE Transactions on Information Theory.

[220]  Jun Sun,et al.  Efficient Measurement Generation and Pervasive Sparsity for Compressive Data Gathering , 2010, IEEE Transactions on Wireless Communications.

[221]  Petros Boufounos,et al.  Universal Rate-Efficient Scalar Quantization , 2010, IEEE Transactions on Information Theory.

[222]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[223]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[224]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[225]  Yonina C. Eldar,et al.  Compressed sensing under optimal quantization , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[226]  Michael Elad,et al.  Closed-Form MMSE Estimation for Signal Denoising Under Sparse Representation Modeling Over a Unitary Dictionary , 2010, IEEE Transactions on Signal Processing.

[227]  Symeon Chatzinotas,et al.  Application of Compressive Sensing in Cognitive Radio Communications: A Survey , 2016, IEEE Communications Surveys & Tutorials.

[228]  Georgios B. Giannakis,et al.  Distributed Spectrum Sensing for Cognitive Radio Networks by Exploiting Sparsity , 2010, IEEE Transactions on Signal Processing.

[229]  Mario Di Francesco,et al.  Energy conservation in wireless sensor networks: A survey , 2009, Ad Hoc Networks.

[230]  Yasir Mehmood,et al.  Internet-of-Things-Based Smart Cities: Recent Advances and Challenges , 2017, IEEE Communications Magazine.

[231]  David J. Fleet,et al.  Likelihood functions and confidence bounds for total-least-squares problems , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[232]  Geert Leus,et al.  Compressive Wideband Power Spectrum Estimation , 2012, IEEE Transactions on Signal Processing.

[233]  Rodney A. Kennedy,et al.  Effects of basis-mismatch in compressive sampling of continuous sinusoidal signals , 2010, 2010 2nd International Conference on Future Computer and Communication.

[234]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[235]  Petre Stoica,et al.  SPICE and LIKES: Two hyperparameter-free methods for sparse-parameter estimation , 2012, Signal Process..

[236]  Vivek K. Goyal,et al.  Optimal quantization of random measurements in compressed sensing , 2009, 2009 IEEE International Symposium on Information Theory.

[237]  Rui Zhang,et al.  Design of optimal quantizers for distributed source coding , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[238]  Daibashish Gangopadhyay,et al.  Compressed Sensing System Considerations for ECG and EMG Wireless Biosensors , 2012, IEEE Transactions on Biomedical Circuits and Systems.

[239]  Wei Wang,et al.  Distributed Sparse Random Projections for Refinable Approximation , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.

[240]  Richard G. Baraniuk,et al.  Measurement Bounds for Sparse Signal Ensembles via Graphical Models , 2011, IEEE Transactions on Information Theory.

[241]  Benjamin R. Hamilton,et al.  Statistical Signal Processing Workshop ( SSP ) RADIO FREQUENCY TOMOGRAPHY IN MOBILE NETWORKS , 2012 .

[242]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[243]  Mikael Skoglund,et al.  Joint Source-Channel Vector Quantization for Compressed Sensing , 2014, IEEE Transactions on Signal Processing.

[244]  Michele Zorzi,et al.  On the interplay between routing and signal representation for Compressive Sensing in wireless sensor networks , 2009, 2009 Information Theory and Applications Workshop.

[245]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[246]  Georgios B. Giannakis,et al.  Channel Gain Map Tracking via Distributed Kriging , 2011, IEEE Transactions on Vehicular Technology.

[247]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[248]  Mani Srivastava,et al.  Energy-aware wireless microsensor networks , 2002, IEEE Signal Process. Mag..

[249]  Yasamin Mostofi,et al.  Compressive cooperative sensing and mapping in mobile networks , 2009, 2009 American Control Conference.

[250]  Georgios B. Giannakis,et al.  Exploiting Sparse User Activity in Multiuser Detection , 2011 .

[251]  Jörg Widmer,et al.  Data Acquisition through Joint Compressive Sensing and Principal Component Analysis , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[252]  David J. Miller,et al.  A deterministic annealing algorithm for entropy-constrained vector quantizer design , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[253]  B.D. Rao,et al.  Application of total least squares (TLS) to the design of sparse signal representation dictionaries , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[254]  Morteza Mardani,et al.  Subspace Learning and Imputation for Streaming Big Data Matrices and Tensors , 2014, IEEE Transactions on Signal Processing.

[255]  Bhaskar D. Rao,et al.  Sparse channel estimation via matching pursuit with application to equalization , 2002, IEEE Trans. Commun..

[256]  Richard G. Baraniuk,et al.  Kronecker product matrices for compressive sensing , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[257]  Sundeep Prabhakar Chepuri,et al.  Sparse Sensing for Statistical Inference , 2016, Found. Trends Signal Process..

[258]  Jie Ren,et al.  Computing the Rate Distortion Region for the CEO Problem With Independent Sources , 2015, IEEE Transactions on Signal Processing.

[259]  Enrico Magli,et al.  Distributed Compressed Sensing , 2015 .

[260]  Luis Alonso,et al.  RLNC-Aided Cooperative Compressed Sensing for Energy Efficient Vital Signal Telemonitoring , 2015, IEEE Transactions on Wireless Communications.

[261]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[262]  Robert D. Nowak,et al.  Adaptive sensing for sparse recovery , 2012, Compressed Sensing.

[263]  Trac D. Tran,et al.  Fast and Efficient Compressive Sensing Using Structurally Random Matrices , 2011, IEEE Transactions on Signal Processing.

[264]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[265]  William A. Pearlman,et al.  Optimal encoding of discrete-time continuous-amplitude memoryless sources with finite output alphabets , 1980, IEEE Trans. Inf. Theory.

[266]  Justin K. Romberg,et al.  Fast and Accurate Algorithms for Re-Weighted $\ell _{1}$-Norm Minimization , 2012, IEEE Transactions on Signal Processing.

[267]  Aylin Yener,et al.  Remote source coding with two-sided information , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[268]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[269]  David M. Goblirsch Quantization Systems for Hidden Markov Sources , 1989 .

[270]  Ian F. Akyildiz,et al.  On Exploiting Spatial and Temporal Correlation in Wireless Sensor Networks , 2004 .

[271]  Michael Elad,et al.  A Plurality of Sparse Representations Is Better Than the Sparsest One Alone , 2009, IEEE Transactions on Information Theory.

[272]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[273]  Michael G. Rabbat,et al.  Compressed RF Tomography for Wireless Sensor Networks: Centralized and Decentralized Approaches , 2009, DCOSS.

[274]  R. Gray Conditional Rate-Distortion Theory , 1972 .

[275]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[276]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[277]  Morteza Mardani,et al.  Dynamic Anomalography: Tracking Network Anomalies Via Sparsity and Low Rank , 2012, IEEE Journal of Selected Topics in Signal Processing.

[278]  Wenjiang J. Fu,et al.  Asymptotics for lasso-type estimators , 2000 .

[279]  Antonio Ortega,et al.  Spatially-Localized Compressed Sensing and Routing in Multi-hop Sensor Networks , 2009, GSN.

[280]  Michelle Effros,et al.  Low complexity code design for lossless and near-lossless side information source codes , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[281]  Barry M. Leiner,et al.  Rate-distortion theory for ergodic sources with side information (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[282]  Adrian Stern,et al.  Compressed Imaging With a Separable Sensing Operator , 2009, IEEE Signal Processing Letters.

[283]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[284]  Namrata Vaswani,et al.  Time invariant error bounds for modified-CS based sparse signal sequence recovery , 2013, 2013 IEEE International Symposium on Information Theory.

[285]  Jerry D. Gibson Information Theory and Rate Distortion Theory for Communications and Compression , 2013, Information Theory and Rate Distortion Theory for Communications and Compression.

[286]  Klaus Nordhausen,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman , 2009 .

[287]  Allen Gersho,et al.  Vector quantizer design for memoryless noisy channels , 1988, IEEE International Conference on Communications, - Spanning the Universe..

[288]  Geoffrey C. Fox,et al.  Vector quantization by deterministic annealing , 1992, IEEE Trans. Inf. Theory.

[289]  Alfred O. Hero,et al.  Partial update LMS algorithms , 2005, IEEE Transactions on Signal Processing.

[290]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[291]  Michael Elad,et al.  On MMSE and MAP Denoising Under Sparse Representation Modeling Over a Unitary Dictionary , 2011, IEEE Transactions on Signal Processing.

[292]  Georgios B. Giannakis,et al.  Channel Gain Cartography for Cognitive Radios Leveraging Low Rank and Sparsity , 2017, IEEE Transactions on Wireless Communications.

[293]  Marian Codreanu,et al.  Distributed correlated data gathering in wireless sensor networks via compressed sensing , 2013, 2013 Asilomar Conference on Signals, Systems and Computers.

[294]  Piotr Indyk,et al.  Combining geometry and combinatorics: A unified approach to sparse signal recovery , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[295]  Marian Codreanu,et al.  Distributed Distortion-Rate Optimized Compressed Sensing in Wireless Sensor Networks , 2018, IEEE Transactions on Communications.

[296]  Georgios B. Giannakis,et al.  RLS-weighted Lasso for adaptive estimation of sparse signals , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[297]  Sundeep Rangan,et al.  Message-Passing De-Quantization With Applications to Compressed Sensing , 2012, IEEE Transactions on Signal Processing.

[298]  P. Wertz,et al.  Dominant Path Prediction Model for Indoor Scenarios , 2005 .

[299]  Mung Chiang,et al.  Duality between channel capacity and rate distortion with two-sided state information , 2002, IEEE Trans. Inf. Theory.

[300]  Georgios B. Giannakis,et al.  Sparsity-Cognizant Total Least-Squares for Perturbed Compressive Sampling , 2010, IEEE Transactions on Signal Processing.

[301]  Toby Berger,et al.  Rate distortion theory : a mathematical basis for data compression , 1971 .

[302]  Paulo Sergio Ramirez,et al.  Fundamentals of Adaptive Filtering , 2002 .

[303]  Benjamin R. Hamilton,et al.  Propagation Modeling for Radio Frequency Tomography in Wireless Networks , 2014, IEEE Journal of Selected Topics in Signal Processing.

[304]  Rick Chartrand,et al.  Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.

[305]  Bert Fristedt,et al.  A modern approach to probability theory , 1996 .

[306]  Kannan Ramchandran,et al.  Distributed compression in a dense microsensor network , 2002, IEEE Signal Process. Mag..

[307]  Enrico Magli,et al.  Progressive Compressed Sensing and Reconstruction of Multidimensional Signals Using Hybrid Transform/Prediction Sparsity Model , 2012, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[308]  Robert M. Gray,et al.  Encoding of correlated observations , 1987, IEEE Trans. Inf. Theory.

[309]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[310]  John Wright,et al.  Compressive principal component pursuit , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.