On Solving Polynomial, Factorable, and Black-Box Optimization Problems Using the RLT Methodology

This paper provides an expository discussion on using the Reformulation-Linearization/Convexification (RLT) technique as a unifying approach for solving nonconvex polynomial, factorable, and certain black-box optimization problems. The principal RLT construct applies a Reformulation phase to add valid inequalities including polynomial and semidefinite cuts, and a Linearization phase to derive higher dimensional tight linear programming relaxations. These relaxations are embedded within a suitable branch-and-bound scheme that converges to a global optimum for polynomial or factorable programs, and results in a pseudo-global optimization method that derives approximate, near-optimal solutions for black-box optimization problems. We present the basic underlying theory, and illustrate the application of this theory to solve various problems.

[1]  Hanif D. Sherali,et al.  Reformulation-Linearization Techniques for Discrete Optimization Problems , 1998 .

[2]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[3]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[4]  Hanif D. Sherali,et al.  A Global Optimization RLT-based Approach for Solving the Hard Clustering Problem , 2005, J. Glob. Optim..

[5]  Hanif D. Sherali,et al.  Enhanced lower bounds for the global optimization of water distribution networks , 1998 .

[6]  Panos M. Pardalos,et al.  A Collection of Test Problems for Constrained Global Optimization Algorithms , 1990, Lecture Notes in Computer Science.

[7]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[8]  Hanif D. Sherali,et al.  A Pseudo-Global Optimization Approach with Application to the Design of Containerships , 2003, J. Glob. Optim..

[9]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[10]  Robert F. Ling,et al.  Cluster analysis algorithms for data reduction and classification of objects , 1981 .

[11]  Hiroshi Konno,et al.  Multiplicative Programming Problems , 1995 .

[12]  Hanif D. Sherali,et al.  Comparison of Two Reformulation-Linearization Technique Based Linear Programming Relaxations for Polynomial Programming Problems , 1997, J. Glob. Optim..

[13]  Mohamed S. Kamel,et al.  New algorithms for solving the fuzzy clustering problem , 1994, Pattern Recognit..

[14]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[15]  Jean B. Lasserre,et al.  Semidefinite Programming vs. LP Relaxations for Polynomial Programming , 2002, Math. Oper. Res..

[16]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[17]  Thomas M. Walski,et al.  Analysis of water distribution systems , 1984 .

[18]  O. Hughes,et al.  A Prototype Tool for Multidisciplinary Design Optimization of Ships , 2000 .

[19]  Hanif D. Sherali,et al.  Global optimization of nonconvex factorable programming problems , 2001, Math. Program..

[20]  Hanif D. Sherali,et al.  An enhanced response surface methodology (RSM) algorithm using gradient deflection and second-order search strategies , 1998, Comput. Oper. Res..

[21]  Y.T. Hou,et al.  On energy provisioning and relay node placement for wireless sensor networks , 2005, IEEE Transactions on Wireless Communications.

[22]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[23]  J. C. Peters,et al.  Fuzzy Cluster Analysis : A New Method to Predict Future Cardiac Events in Patients With Positive Stress Tests , 1998 .

[24]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[25]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[26]  Hanif D. Sherali,et al.  Enhancing RLT relaxations via a new class of semidefinite cuts , 2002, J. Glob. Optim..

[27]  E. A. Volkov Numerical Methods , 1986 .

[28]  Reiner Horst,et al.  Deterministic methods in constrained global optimization: Some recent advances and new fields of application , 1990 .

[29]  Hanif D. Sherali,et al.  A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique , 1992, J. Glob. Optim..

[30]  Hanif D. Sherali,et al.  Allocating Emergency Response Resources to Minimize Risk with Equity Considerations , 2004 .

[31]  C. Floudas,et al.  A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—I. Theory , 1990 .

[32]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[33]  Hans-Martin Gutmann,et al.  A Radial Basis Function Method for Global Optimization , 2001, J. Glob. Optim..

[34]  J. E. Falk,et al.  An Algorithm for Separable Nonconvex Programming Problems , 1969 .

[35]  P. Pardalos,et al.  State of the art in global optimization: computational methods and applications , 1996 .

[36]  Hanif D. Sherali,et al.  Effective Relaxations and Partitioning Schemes for Solving Water Distribution Network Design Problems to Global Optimality , 2001, J. Glob. Optim..

[37]  Pierre Hansen,et al.  A branch and cut algorithm for nonconvex quadratically constrained quadratic programming , 1997, Math. Program..

[38]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations and Convex Hull Characterizations for Mixed-integer Zero-one Programming Problems , 1994, Discret. Appl. Math..

[39]  Han-Lin Li,et al.  An approximate approach of global optimization for polynomial programming problems , 1998, Eur. J. Oper. Res..

[40]  Jitamitra Desai,et al.  A discrete optimization approach for locating Automatic Vehicle Identification readers for the provision of roadway travel times , 2006 .

[41]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[42]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[43]  Franz Rendl,et al.  Semidefinite programming and integer programming , 2002 .

[44]  Diethard Klatte,et al.  A Frank–Wolfe Type Theorem for Convex Polynomial Programs , 2002, Comput. Optim. Appl..

[45]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[46]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[47]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[48]  Pierre Hansen,et al.  Pooling Problem: Alternate Formulations and Solution Methods , 2000, Manag. Sci..

[49]  Warren P. Adams,et al.  A Tight Linearization and an Algorithm for Zero-One Quadratic Programming Problems , 1986 .

[50]  Vanderbei Robert,et al.  On Formulating Semidefinite Programming Problems as Smooth Convex Nonlinear Optimization Problems , 2000 .

[51]  Nikolaos V. Sahinidis,et al.  A Finite Algorithm for Global Minimization of Separable Concave Programs , 1998, J. Glob. Optim..

[52]  Hanif D. Sherali,et al.  An Airspace Planning and Collaborative Decision - Making Model: Part I - Probabilistic Conflicts, Workload, and Equity Considerations , 2003, Transp. Sci..

[53]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[54]  Hanif D. Sherali,et al.  A reformulation-convexification approach for solving nonconvex quadratic programming problems , 1995, J. Glob. Optim..

[55]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[56]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[57]  Hanif D. Sherali,et al.  Global Optimization of Nonconvex Polynomial Programming Problems Having Rational Exponents , 1998, J. Glob. Optim..

[58]  Hiroshi Konno,et al.  Cutting Plane Algorithms for Nonlinear Semi-Definite Programming Problems with Applications , 2003, J. Glob. Optim..

[59]  N. Shor Nondifferentiable Optimization and Polynomial Problems , 1998 .

[60]  Aharon Ben-Tal,et al.  Global minimization by reducing the duality gap , 1994, Math. Program..

[61]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .