Telescoping in the context of symbolic summation in Maple
暂无分享,去创建一个
Keith O. Geddes | Jacques Carette | Sergei A. Abramov | Ha Q. Le | H. Q. Le | K. Geddes | S. Abramov | J. Carette
[1] Mark van Hoeij,et al. Finite singularities and hypergeometric solutions of linear recurrence equations , 1999 .
[2] Peter Paule,et al. Greatest Factorial Factorization and Symbolic Summation , 1995, J. Symb. Comput..
[3] Sergei A. Abramov,et al. Minimal decomposition of indefinite hypergeometric sums , 2001, ISSAC '01.
[4] G. Rw. Decision procedure for indefinite hypergeometric summation , 1978 .
[5] Sergei A. Abramov,et al. Applicability of Zeilberger's algorithm to hypergeometric terms , 2002, ISSAC '02.
[6] Wolfram Koepf,et al. Hypergeometric Summation : An Algorithmic Approach to Summation and Special Function Identities , 1998 .
[7] Doron Zeilberger,et al. An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .
[8] Roberto Pirastu,et al. Rational Summation and Gosper-Petkovsek Representation , 1995, J. Symb. Comput..
[9] Bruno Buchberger,et al. Computer algebra symbolic and algebraic computation , 1982, SIGS.
[10] Marko Petkovsek,et al. Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..
[11] Kurt Wegschaider,et al. Computer Generated Proofs of Binomial Multi-Sum Identities , 1997 .
[12] Kelly Roach,et al. Hypergeometric function representations , 1996, ISSAC '96.
[13] Diploma Thesis,et al. A Mathematica q-Analogue of Zeilberger's Algorithm for Proving q-Hypergeometric Identities , 1995 .
[14] Yu. A. Brychkov,et al. Integrals and series , 1992 .
[15] S. A. Abramov,et al. Applicability of Zeilberger’s Algorithm to Rational Functions , 2000 .
[16] Mark van Hoeij,et al. Integration of solutions of linear functional equations , 1999 .
[17] Andrej Bauer,et al. Multibasic and Mixed Hypergeometric Gosper-Type Algorithms , 1999, J. Symb. Comput..
[18] Peter Paule,et al. A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities , 1995, J. Symb. Comput..
[19] Frédéric Chyzak,et al. An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..
[20] Tom H. Koornwinder,et al. On Zeilberger's algorithm and its q-analogue: a rigorous description , 1993 .
[21] R. W. Gosper. Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.
[22] S. A. Abramov,et al. The rational component of the solution of a first-order linear recurrence relation with a rational right side , 1975 .
[23] H. Q. Le. A direct algorithm to construct the minimal Z-pairs for rational functions , 2003, Adv. Appl. Math..
[24] S. A. Abramov,et al. When does Zeilberger's algorithm succeed? , 2003, Adv. Appl. Math..
[25] Wolfram Koepf,et al. Algorithms for q-Hypergeometric Summation in Computer Algebra , 1999, J. Symb. Comput..
[26] Christian Krattenthaler,et al. HYP and HYPQ , 1995, J. Symb. Comput..
[27] Michael Karr,et al. Summation in Finite Terms , 1981, JACM.
[28] Marko Petkovšek,et al. Proof of a Conjecture of Wilf and Zeilberger , 2001 .
[29] Doron Zeilberger,et al. The Method of Creative Telescoping , 1991, J. Symb. Comput..
[30] Christian Krattenthaler,et al. HYP and HYPQ Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q-binomial sums and basic hypergeometric series , 1993 .
[31] Bruno Salvy,et al. Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..
[32] Sergei A. Abramov. Indefinite sums of rational functions , 1995, ISSAC '95.
[33] Keith O. Geddes,et al. COMPUTER ALGEBRA LIBRARY FOR THE CONSTRUCTION OF THE MINIMAL TELESCOPERS , 2002 .
[34] Sergei A. Abramov,et al. Minimal completely factorable annihilators , 1997, ISSAC.
[35] Sergei A. Abramov,et al. D'Alembertian solutions of inhomogeneous linear equations (differential, difference, and some other) , 1996, ISSAC '96.
[36] Sergei A. Abramov,et al. Rational Normal Forms and Minimal Decompositions of Hypergeometric Terms , 2002, J. Symb. Comput..