Telescoping in the context of symbolic summation in Maple

Abstract This paper is an exposition of different methods for computing closed forms of definite sums. The focus is on recently-developed results on computing closed forms of definite sums of hypergeometric terms. A design and an implementation of a software package which incorporates these methods into the computer algebra system Maple are described in detail.

[1]  Mark van Hoeij,et al.  Finite singularities and hypergeometric solutions of linear recurrence equations , 1999 .

[2]  Peter Paule,et al.  Greatest Factorial Factorization and Symbolic Summation , 1995, J. Symb. Comput..

[3]  Sergei A. Abramov,et al.  Minimal decomposition of indefinite hypergeometric sums , 2001, ISSAC '01.

[4]  G. Rw Decision procedure for indefinite hypergeometric summation , 1978 .

[5]  Sergei A. Abramov,et al.  Applicability of Zeilberger's algorithm to hypergeometric terms , 2002, ISSAC '02.

[6]  Wolfram Koepf,et al.  Hypergeometric Summation : An Algorithmic Approach to Summation and Special Function Identities , 1998 .

[7]  Doron Zeilberger,et al.  An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .

[8]  Roberto Pirastu,et al.  Rational Summation and Gosper-Petkovsek Representation , 1995, J. Symb. Comput..

[9]  Bruno Buchberger,et al.  Computer algebra symbolic and algebraic computation , 1982, SIGS.

[10]  Marko Petkovsek,et al.  Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..

[11]  Kurt Wegschaider,et al.  Computer Generated Proofs of Binomial Multi-Sum Identities , 1997 .

[12]  Kelly Roach,et al.  Hypergeometric function representations , 1996, ISSAC '96.

[13]  Diploma Thesis,et al.  A Mathematica q-Analogue of Zeilberger's Algorithm for Proving q-Hypergeometric Identities , 1995 .

[14]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[15]  S. A. Abramov,et al.  Applicability of Zeilberger’s Algorithm to Rational Functions , 2000 .

[16]  Mark van Hoeij,et al.  Integration of solutions of linear functional equations , 1999 .

[17]  Andrej Bauer,et al.  Multibasic and Mixed Hypergeometric Gosper-Type Algorithms , 1999, J. Symb. Comput..

[18]  Peter Paule,et al.  A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities , 1995, J. Symb. Comput..

[19]  Frédéric Chyzak,et al.  An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..

[20]  Tom H. Koornwinder,et al.  On Zeilberger's algorithm and its q-analogue: a rigorous description , 1993 .

[21]  R. W. Gosper Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[22]  S. A. Abramov,et al.  The rational component of the solution of a first-order linear recurrence relation with a rational right side , 1975 .

[23]  H. Q. Le A direct algorithm to construct the minimal Z-pairs for rational functions , 2003, Adv. Appl. Math..

[24]  S. A. Abramov,et al.  When does Zeilberger's algorithm succeed? , 2003, Adv. Appl. Math..

[25]  Wolfram Koepf,et al.  Algorithms for q-Hypergeometric Summation in Computer Algebra , 1999, J. Symb. Comput..

[26]  Christian Krattenthaler,et al.  HYP and HYPQ , 1995, J. Symb. Comput..

[27]  Michael Karr,et al.  Summation in Finite Terms , 1981, JACM.

[28]  Marko Petkovšek,et al.  Proof of a Conjecture of Wilf and Zeilberger , 2001 .

[29]  Doron Zeilberger,et al.  The Method of Creative Telescoping , 1991, J. Symb. Comput..

[30]  Christian Krattenthaler,et al.  HYP and HYPQ Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q-binomial sums and basic hypergeometric series , 1993 .

[31]  Bruno Salvy,et al.  Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..

[32]  Sergei A. Abramov Indefinite sums of rational functions , 1995, ISSAC '95.

[33]  Keith O. Geddes,et al.  COMPUTER ALGEBRA LIBRARY FOR THE CONSTRUCTION OF THE MINIMAL TELESCOPERS , 2002 .

[34]  Sergei A. Abramov,et al.  Minimal completely factorable annihilators , 1997, ISSAC.

[35]  Sergei A. Abramov,et al.  D'Alembertian solutions of inhomogeneous linear equations (differential, difference, and some other) , 1996, ISSAC '96.

[36]  Sergei A. Abramov,et al.  Rational Normal Forms and Minimal Decompositions of Hypergeometric Terms , 2002, J. Symb. Comput..