Effect of Cellulose Crystallinity on Solid/Liquid Phase Reactions Responsible for the Formation of Carbonaceous Residues during Pyrolysis

This study reports changes in solid phase composition when samples of Avicel cellulose (crystallinity: 60.5%) and ball-milled microcrystalline cellulose (crystallinity: 6.5%) were subjected to pyrolysis in a spoon reactor. Solid state chemistry evolution was examined by hydrolysis-ion exchange chromatography, scanning electron miscroscopy (SEM), Fourier transform infrared (FTIR), and 13C nuclear magnetic resonance (NMR). The liquid reaction intermediate was found to cause particle agglomeration at temperatures below 300 °C. At higher temperatures, the ball-milled cellulose melted completely but the more crystalline cellulose conserved its fibrous structure. The formation of C═O and C═C groups was accelerated by the presence of liquid intermediates derived from the amorphous cellulose. The content of cross-linked cellulose was quantified by the combined use of acid hydrolysis and 13C NMR. A new reaction mechanism to describe the changes in the solid residue composition at different reaction conditions is p...

[1]  F. Shafizadeh,et al.  Saccharification of douglas‐fir wood by a combination of prehydrolysis and pyrolysis , 1982 .

[2]  O. Golova Chemical Effects of Heat on Cellulose , 1975 .

[3]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[4]  Shu-lin Chen,et al.  Fermentation of levoglucosan with oleaginous yeasts for lipid production. , 2013, Bioresource technology.

[5]  Manuel Garcia-Perez,et al.  Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis , 2013 .

[6]  S. Kersten,et al.  Stepwise Fast Pyrolysis of Pine Wood , 2012 .

[7]  James P. Diebold,et al.  A unified, global model for the pyrolysis of cellulose , 1994 .

[8]  Fred Shafizadeh,et al.  Thermal degradation of cellulose in air and nitrogen at low temperatures , 1979 .

[9]  A. Broido,et al.  Pyrolysis-Crystallinity Relationships in Cellulose , 1970 .

[10]  G. N. Richards,et al.  Mechanisms of pyrolysis of polysaccharides: Cellobiitol as a model for cellulose , 1990 .

[11]  A. Dufour,et al.  The origin of molecular mobility during biomass pyrolysis as revealed by in situ (1)H NMR spectroscopy. , 2012, ChemSusChem.

[12]  S. Patai,et al.  Pyrolytic Reaction of Carbohydrates. Part IX the Effect of Additives on the Thermal Behavior of Cellulose Samples of Different Crystallinity , 1970 .

[13]  M. Hajaligol,et al.  Observation and Characterization of Cellulose Pyrolysis Intermediates by 13C CPMAS NMR. A New Mechanistic Model , 2004 .

[14]  Yunqiao Pu,et al.  CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. , 2006, Carbohydrate research.

[15]  G. N. Richards,et al.  Influence of metal ions and of salts on products from pyrolysis of wood: Applications to thermochemical processing of newsprint and biomass , 1991 .

[16]  W. Peters,et al.  Cellulose pyrolysis kinetics and char formation mechanism , 1977 .

[17]  T. F. Demmitt,et al.  Reaction mechanisms in cellulose pyrolysis: a literature review , 1977 .

[18]  Eric M. Suuberg,et al.  Cellulose Thermal Decomposition Kinetics: Global Mass Loss Kinetics , 1995 .

[19]  M. Lewin,et al.  The influence of fine structure on the pyrolysis of cellulose. I. Vacuum pyrolysis , 1973 .

[20]  M. L. Nelson,et al.  Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II , 1964 .

[21]  B. Delmon,et al.  Hydrotreatment of pyrolysis oils from biomass: reactivity of the various categories of oxygenated compounds and preliminary techno-economical study , 1996 .

[22]  C. Sterling,et al.  Effect of Wet and Dry Heat on Structure of Cellulose , 1966 .

[23]  J. Boon,et al.  Structural studies on cellulose pyrolysis and cellulose chars by PYMS, PYGCMS, FTIR, NMR and by wet chemical techniques , 1994 .

[24]  David P. Schmidt,et al.  Aerosol generation by reactive boiling ejection of molten cellulose , 2011 .

[25]  Stefan Czernik,et al.  Pretreatment of wood and cellulose for production of sugars by fast pyrolysis , 1989 .

[26]  Hongwei Wu,et al.  Differences in Water-Soluble Intermediates from Slow Pyrolysis of Amorphous and Crystalline Cellulose , 2013 .

[27]  Serge Bourbigot,et al.  The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis Interdependence of the steps , 2009 .

[28]  Paul J. Dauenhauer,et al.  Reactive boiling of cellulose for integrated catalysis through an intermediate liquid , 2009 .

[29]  Chun-Zhu Li,et al.  Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids. , 2010, Bioresource technology.

[30]  Jaap J. Boon,et al.  Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study , 1994 .

[31]  S. Saka,et al.  Pyrolysis behavior of levoglucosan as an intermediate in cellulose pyrolysis: polymerization into polysaccharide as a key reaction to carbonized product formation , 2003, Journal of Wood Science.

[32]  I. Hasegawa,et al.  Analysis of Cross-Linking Behavior during Pyrolysis of Cellulose for Elucidating Reaction Pathway , 2009 .

[33]  T. Iversen,et al.  A comparative CP/MAS 13C-NMR study of cellulose structure in spruce wood and kraft pulp , 2000 .

[34]  Fred Shafizadeh,et al.  A kinetic model for pyrolysis of cellulose. , 1979 .

[35]  D. Radlein,et al.  Fast pyrolysis of natural polysaccharides as a potential industrial process , 1991 .

[36]  Fred Shafizadeh,et al.  Introduction to pyrolysis of biomass , 1982 .

[37]  M. Hajaligol,et al.  Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose , 2003 .

[38]  Gregg Marland,et al.  THE POTENTIAL OF BIOMASS FUELS IN THE CONTEXT OF GLOBAL CLIMATE CHANGE: Focus on Transportation Fuels , 2000 .

[39]  Per Tomas Larsson,et al.  Determination of the cellulose Iα allomorph content in a tunicate cellulose by CP/MAS 13C-NMR spectroscopy , 1995 .

[40]  Yu-Chuan Lin,et al.  Kinetics and mechanism of cellulose pyrolysis , 2009 .

[41]  Michael Jerry Antal,et al.  Kinetic modeling of biomass pyrolysis , 1997 .

[42]  Michael Jerry Antal,et al.  Kinetics of the Thermal Decomposition of Cellulose, Hemicellulose, and Sugar Cane Bagasse , 1989 .

[43]  D. Meier,et al.  Volatile products of catalytic flash pyrolysis of celluloses , 2001 .

[44]  D. Arseneau Competitive Reactions in the Thermal Decomposition of Cellulose , 1971 .

[45]  H. Kooi,et al.  Application of the SAFT equation of state to biomass fast pyrolysis liquid , 2005 .

[46]  S. Patai,et al.  Pyrolytic Reactions of Carbohydrates. Part VI. Isothermal Decomposition of Cellulose In Vacuo, in the Presence of Additives , 1969 .

[47]  Thomas A. Milne,et al.  Molecular characterization of the pyrolysis of biomass. 2. Applications , 1987 .

[48]  Jacques Lédé,et al.  Cellulose pyrolysis kinetics: An historical review on the existence and role of intermediate active cellulose , 2012 .

[49]  Linda J Broadbelt,et al.  Unraveling the reactions that unravel cellulose. , 2012, The journal of physical chemistry. A.

[50]  Fumitaka Horii,et al.  CPMAS carbon-13 NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures , 1993 .

[51]  Attrition-free pyrolysis to produce bio-oil and char. , 2009 .

[52]  R. Marchessault,et al.  Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm.−1 , 1959 .

[53]  S. Patai,et al.  Pyrolytic Reactions of Carbohydrates. Part V. Isothermal Decomposition of Cellulose in Vacuo , 1969 .

[54]  Michael Jerry Antal,et al.  Biomass Pyrolysis: A Review of the Literature Part 2—Lignocellulose Pyrolysis , 1985 .

[55]  Paul J. Dauenhauer,et al.  Ab initio dynamics of cellulose pyrolysis: nascent decomposition pathways at 327 and 600 °C. , 2012, Journal of the American Chemical Society.

[56]  Göran Berndes,et al.  The contribution of biomass in the future global energy supply: a review of 17 studies , 2003 .

[57]  Giovanni Camino,et al.  Overview of water evolution during the thermal degradation of cellulose , 2001 .

[58]  Per Tomas Larsson,et al.  Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy , 1998 .

[59]  Donald S. Scott,et al.  On the mechanism of the rapid pyrolysis of cellulose , 1986 .

[60]  M. García-Pérez,et al.  Recent developments in fast pyrolysis of ligno-cellulosic materials. , 2013, Current opinion in biotechnology.

[61]  F. Shafizadeh,et al.  Pyrolysis of cellulose. , 1973, Carbohydrate research.

[62]  Tiina Liitiä,et al.  Solid State NMR Studies on Cellulose Crystallinity in Fines and Bulk Fibres Separated from Refined Kraft Pulp , 2000 .

[63]  A. Corma,et al.  Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. , 2006, Chemical reviews.

[64]  C. Kennedy,et al.  Microfibril diameter in celery collenchyma cellulose: X-ray scattering and NMR evidence , 2007 .

[65]  Anthony V. Bridgwater,et al.  Developments in direct thermochemical liquefaction of biomass: 1983-1990 , 1991 .

[66]  A. Broido,et al.  Char yield on pyrolysis of cellulose , 1975 .

[67]  F. Shafizadeh,et al.  Development of aromaticity in cellulosic chars , 1983 .

[68]  J. Boon,et al.  Preservation of d-glucose-oligosaccharides in cellulose chars , 1993 .

[69]  Olivier Boutin,et al.  Radiant flash pyrolysis of cellulose—Evidence for the formation of short life time intermediate liquid species , 1998 .

[70]  J. P. Diebold,et al.  The Nature and Properties of Intermediate and Unvaporized Biomass Pyrolysis Materials , 1997 .

[71]  M. Vignon,et al.  Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR , 1999 .

[72]  Eric M. Suuberg,et al.  Vapor Pressures and Enthalpies of Sublimation of d-Glucose, d-Xylose, Cellobiose, and Levoglucosan , 1999 .

[73]  M. Antal,et al.  Is the Broido-Shafizadeh model for cellulose pyrolysis true? , 1994 .

[74]  P. Marchal,et al.  In Situ Analysis of Biomass Pyrolysis by High Temperature Rheology in Relations with 1H NMR , 2012 .

[75]  Linda J. Broadbelt,et al.  A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition , 2012 .

[76]  A. Broido,et al.  Thermogravimetric Analysis of Ammonia-Swelled Cellulose , 1970 .

[77]  Anthony V. Bridgwater,et al.  Production of high grade fuels and chemicals from catalytic pyrolysis of biomass , 1996 .