Robustness of N-Dual Fuzzy Connectives

The main contribution of this paper is concerned with the robustness of N-dual connectives in fuzzy reasoning. Starting with an evaluation of the sensitivity in n-order function on [0,1], we apply the results in the D-coimplication classes. The paper formally states that the robustness of pairs of mutual dual n-order functions can be compared, preserving properties and the ordered relation of their arguments.

[1]  Mingsheng Ying,et al.  Perturbation of fuzzy reasoning , 1999, IEEE Trans. Fuzzy Syst..

[2]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[3]  Zun-Quan Xia,et al.  Intuitionistic fuzzy implication operators: Expressions and properties , 2006 .

[4]  Joan Torrens,et al.  QL-implications versus D-implications , 2006, Kybernetika.

[5]  Chunquan Li,et al.  Robustness of fuzzy reasoning via logically equivalence measure , 2007, Inf. Sci..

[6]  Siegfried Gottwald,et al.  Fuzzy Sets and Fuzzy Logic , 1993 .

[7]  Benjamín R. C. Bedregal,et al.  On interval fuzzy S-implications , 2010, Inf. Sci..

[8]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[9]  Adrião Duarte Dória Neto,et al.  Relating De Morgan triples with Atanassov's intuitionistic De Morgan triples via automorphisms , 2011, Int. J. Approx. Reason..

[10]  Michal Baczynski,et al.  Fuzzy Implications , 2008, Studies in Fuzziness and Soft Computing.

[11]  Benjamín R. C. Bedregal,et al.  On interval fuzzy negations , 2010, Fuzzy Sets Syst..

[12]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[13]  Joan Torrens,et al.  Residual implications and co-implications from idempotent uninorms , 2004, Kybernetika.

[14]  Humberto Bustince,et al.  Intuitionistic Fuzzy Implication Operators - An Expression And Main Properties , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[15]  Bernard De Baets,et al.  Commutativity and self-duality: Two tales of one equation , 2009, Int. J. Approx. Reason..

[16]  Kai-Yuan Cai,et al.  Optimal fuzzy reasoning and its robustness analysis , 2004, Int. J. Intell. Syst..

[17]  József Dombi,et al.  Type-2 implications on non-interactive fuzzy truth values , 2008, Fuzzy Sets Syst..

[18]  Joan Torrens,et al.  A Survey on Fuzzy Implication Functions , 2007, IEEE Transactions on Fuzzy Systems.

[19]  Kai-Yuan Cai,et al.  Robustness of fuzzy reasoning and δ-equalities of fuzzy sets , 2001, IEEE Trans. Fuzzy Syst..

[20]  Zhudeng Wang,et al.  Residual coimplicators of left and right uninorms on a complete lattice , 2009, Fuzzy Sets Syst..

[21]  Francesc Esteva,et al.  Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .

[22]  Yongming Li,et al.  Approximation and robustness of fuzzy finite automata , 2008, Int. J. Approx. Reason..

[23]  Witold Pedrycz,et al.  An approach to measure the robustness of fuzzy reasoning , 2005, Int. J. Intell. Syst..

[24]  Humberto Bustince,et al.  Automorphisms, negations and implication operators , 2003, Fuzzy Sets Syst..

[25]  Mirko Navara,et al.  A survey on different triangular norm-based fuzzy logics , 1999, Fuzzy Sets Syst..