Mass Reconstruction of Galaxy-scale Strong Gravitational Lenses Using a Broken Power-law Model

With mock strong gravitational lensing images, we investigate the performance of the broken power-law (BPL) model proposed by Du et al. () on the mass reconstruction of galaxy-scale lenses. An end-to-end test is carried out, including the creation of mock strong lensing images, the subtraction of lens light, and the reconstruction of lensed images, where the lenses are selected from the galaxies in the Illustris-1 simulation. We notice that, regardless of the adopted mass models (the BPL model or its special cases), the Einstein radius can be robustly determined from imaging data alone, and the median bias is typically less than 1%. Away from the Einstein radius, the lens mass distribution tends to be harder to measure, especially at radii where there are no lensed images detected. We find that, with rigid priors, the BPL model can clearly outperform the single power-law models by achieving <5% median bias on the radial convergence profile within the Einstein radius. As for the source light reconstructions, they are found to be sensitive to both lens light contamination and lens mass models, where the BPL model with rigid priors still performs best when there is no lens light contamination. We show that, by correcting for the projection effect, the BPL model can estimate the aperture and luminosity weighted line-of-sight velocity dispersions to an accuracy of ∼6% scatter. These results highlight the great potential of the BPL model in strong lensing related studies.

[1]  R. Massey,et al.  Automated galaxy-galaxy strong lens modelling: No lens left behind , 2022, Monthly notices of the Royal Astronomical Society.

[2]  R. Massey,et al.  Systematic Errors Induced by the Elliptical Power-law model in Galaxy–Galaxy Strong Lens Modeling , 2021, Research in Astronomy and Astrophysics.

[3]  S. Suyu,et al.  SHARP – VIII. J 0924+0219 lens mass distribution and time-delay prediction through adaptive-optics imaging , 2021, Monthly notices of the Royal Astronomical Society.

[4]  S. Birrer Gravitational Lensing Formalism in a Curved Arc Basis: A Continuous Description of Observables and Degeneracies from the Weak to the Strong Lensing Regime , 2021, The Astrophysical Journal.

[5]  P. Schechter,et al.  What Makes Quadruply Lensed Quasars Quadruple? , 2021, 2102.08470.

[6]  R. B. Barreiro,et al.  Planck2018 results , 2020, Astronomy & Astrophysics.

[7]  T. Treu,et al.  Dark matter haloes of massive elliptical galaxies at z ∼ 0.2 are well described by the Navarro–Frenk–White profile , 2020, Monthly Notices of the Royal Astronomical Society.

[8]  J. Frieman,et al.  TDCOSMO IV: Hierarchical time-delay cosmography -- joint inference of the Hubble constant and galaxy density profiles , 2020, 2007.02941.

[9]  G. Meylan,et al.  H0LiCOW – XI. A weak lensing measurement of the external convergence in the field of the lensed quasar B1608+656 using HST and Subaru deep imaging , 2020, Monthly Notices of the Royal Astronomical Society.

[10]  C. Kochanek,et al.  Overconstrained models of time delay lenses redux: how the angular tail wags the radial dog , 2020, Monthly Notices of the Royal Astronomical Society.

[11]  F. Courbin,et al.  TDCOSMO. I. An exploration of systematic uncertainties in the inference of $H_0$ from time-delay cosmography , 2019, 1912.08027.

[12]  Y. Shu,et al.  An Accurate Analytic Mass Model for Lensing Galaxies , 2019, The Astrophysical Journal.

[13]  C. Kochanek,et al.  Overconstrained gravitational lens models and the Hubble constant , 2019, Monthly Notices of the Royal Astronomical Society.

[14]  D. Gerdes,et al.  STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408−5354 , 2019, Monthly Notices of the Royal Astronomical Society.

[15]  L. Williams,et al.  Galaxy-lens determination of H0: constraining density slope in the context of the mass sheet degeneracy , 2019, Journal of Cosmology and Astroparticle Physics.

[16]  Stefan Hilbert,et al.  H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes , 2019, Monthly Notices of the Royal Astronomical Society.

[17]  J. Brownstein,et al.  SDSS-IV MaNGA: the inner density slopes of nearby galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  D. Gerdes,et al.  Erratum: Is every strong lens model unhappy in its own way? Uniform modelling of a sample of 13 quadruply+ imaged quasars , 2018, Monthly Notices of the Royal Astronomical Society.

[19]  R. Nichol,et al.  A precise extragalactic test of General Relativity , 2018, Science.

[20]  F. Bellagamba,et al.  SEAGLE – I. A pipeline for simulating and modelling strong lenses from cosmological hydrodynamic simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[21]  A. Sonnenfeld On the choice of lens density profile in time delay cosmography , 2017, 1710.05925.

[22]  L. Simard,et al.  Galaxies in the Illustris simulation as seen by the Sloan Digital Sky Survey - II. Size-luminosity relations and the deficit of bulge-dominated galaxies in Illustris at low mass , 2017, 1701.08206.

[23]  J. Wagner Generalised model-independent characterisation of strong gravitational lenses I: Theoretical foundations , 2016, 1612.01793.

[24]  P. Schneider,et al.  The inner structure of early-type galaxies in the Illustris simulation , 2016, 1610.07605.

[25]  A. Bolton,et al.  THE BOSS EMISSION-LINE LENS SURVEY. IV. SMOOTH LENS MODELS FOR THE BELLS GALLERY SAMPLE , 2016, 1608.08707.

[26]  G. Meylan,et al.  H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model , 2016, 1607.01790.

[27]  Peter Schneider,et al.  Ambiguities in gravitational lens models: the density field from the source position transformation , 2016, 1606.04321.

[28]  P. Schneider,et al.  Lens galaxies in the Illustris simulation: power-law models and the bias of the Hubble constant from time delays , 2015, 1507.07937.

[29]  R. Metcalf,et al.  The elliptical power law profile lens , 2015, 1507.01819.

[30]  Gregory F. Snyder,et al.  The illustris simulation: Public data release , 2015, Astron. Comput..

[31]  Shy Genel,et al.  The Illustris simulation: the evolving population of black holes across cosmic time , 2014, 1408.6842.

[32]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[33]  V. Springel,et al.  Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.

[34]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[35]  J. Surdej,et al.  Use of the Fourier transform to derive simple expressions for the gravitational lens deflection angle , 2014 .

[36]  P. Schneider,et al.  Source-position transformation: an approximate invariance in strong gravitational lensing , 2013, 1306.4675.

[37]  P. Schneider,et al.  Mass-sheet degeneracy, power-law models and external convergence: Impact on the determination of the Hubble constant from gravitational lensing , 2013, 1306.0901.

[38]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies , 2013, 1308.6483.

[39]  S. D. Rijcke,et al.  Lensing degeneracies and mass substructure , 2012, 1207.4692.

[40]  P. Marshall,et al.  Constraining the dark energy equation of state with double‐source plane strong lenses , 2012, 1203.2758.

[41]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[42]  J. Kneib,et al.  Cosmological Constraints from Strong Gravitational Lensing in Clusters of Galaxies , 2010, Science.

[43]  D. Sluse,et al.  Strong Lensing by Galaxies , 2010, 1003.5567.

[44]  A. Bolton,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SLOAN LENS ACS SURVEY. V. THE FULL ACS STRONG-LENS SAMPLE 1 , 2022 .

[45]  Y. Mellier,et al.  Comparisons between Isothermal and NFW Mass Profiles for Strong-Lensing Galaxy Clusters , 2008, 0805.1148.

[46]  A. Bolton,et al.  Superresolving Distant Galaxies with Gravitational Telescopes: Keck Laser Guide Star Adaptive Optics and Hubble Space Telescope Imaging of the Lens System SDSS J0737+3216 , 2007, 0710.0637.

[47]  Tony O’Hagan Bayes factors , 2006 .

[48]  UCLA,et al.  The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies , 2005, astro-ph/0511453.

[49]  A. Graham,et al.  Density-potential pairs for spherical stellar systems with Sersic light profiles and (optional) power-law cores , 2005, astro-ph/0506192.

[50]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[51]  J. Holtzman,et al.  Structure of Disk-dominated Galaxies. I. Bulge/Disk Parameters, Simulations, and Secular Evolution , 2002, astro-ph/0208404.

[52]  F. Durret,et al.  Energy, entropy and mass scaling relations for elliptical galaxies. Towards a physical understanding of their photometric properties , 2000, astro-ph/0009474.

[53]  A. Potsdam,et al.  The influence of central black holes on gravitational lenses , 2000, astro-ph/0007011.

[54]  P. Saha Lensing Degeneracies Revisited , 2000, astro-ph/0006432.

[55]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[56]  Iaa Spain,et al.  The specific entropy of elliptical galaxies: an explanation for profile‐shape distance indicators? , 1999, astro-ph/9905048.

[57]  C. Kochanek,et al.  Gravitational Lensing by Spiral Galaxies , 1997, astro-ph/9705194.

[58]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[59]  A. Kassiola,et al.  Elliptic Mass Distributions versus Elliptic Potentials in Gravitational Lenses , 1993 .

[60]  I. Shapiro,et al.  Degeneracies in parameter estimates for models of gravitational lens systems , 1988 .

[61]  I. Shapiro,et al.  On model-dependent bounds on H(0) from gravitational images Application of Q0957 + 561A,B , 1985 .

[62]  I. Bray Spheroidal gravitational lenses , 1984 .

[63]  D. S. Kellicott A. A. A. S. , 1896, The Canadian Entomologist.

[64]  Peter Schneider,et al.  Gravitational Lensing: Strong, Weak and Micro , 2006 .

[65]  R. Kantowski,et al.  The theory of transparent gravitational lenses. , 1975 .

[66]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .