Path entanglement of surface plasmons

Metals can sustain traveling electromagnetic waves at their surfaces supported by the collective oscillations of their free electrons in unison. Remarkably, classical electromagnetism captures the essential physics of these ‘surface plasma’ waves using simple models with only macroscopic features, accounting for microscopic electron–electron and electron–phonon interactions with a single, semi-empirical damping parameter. Nevertheless, in quantum theory these microscopic interactions could be important, as any substantial environmental interactions could decohere quantum superpositions of surface plasmons, the quanta of these waves. Here we report a measurement of path entanglement between surface plasmons with 95% contrast, confirming that a path-entangled state can indeed survive without measurable decoherence. Our measurement suggests that elastic scattering mechanisms of the type that might cause pure dephasing in plasmonic systems must be weak enough not to significantly perturb the state of the metal under the experimental conditions we investigated.

[1]  Daiji Fukuda,et al.  Direct observation of bosonic quantum interference of surface plasmon polaritons using photon-number-resolving detectors , 2014 .

[2]  James S. Fakonas,et al.  Two-plasmon quantum interference , 2014, Nature Photonics.

[3]  G. Guo,et al.  High visibility on-chip quantum interference of single surface plasmons , 2014, 2015 Conference on Lasers and Electro-Optics (CLEO).

[4]  S. A. Maier,et al.  Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect , 2014, 2014 16th International Conference on Transparent Optical Networks (ICTON).

[5]  T. Stauber Plasmonics in Dirac systems: from graphene to topological insulators , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  A. Arbabi,et al.  Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances. , 2013, Optics letters.

[7]  V. Zwiller,et al.  Quantum interference in plasmonic circuits. , 2013, Nature nanotechnology.

[8]  Hong Wei,et al.  Metallic nanowires for subwavelength waveguiding and nanophotonic devices , 2013 .

[9]  S. Maier,et al.  Quantum plasmonics , 2013, Nature Physics.

[10]  Yannick Sonnefraud,et al.  Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. , 2012, Nano letters.

[11]  Jean-Jacques Greffet,et al.  Quantum theory of spontaneous and stimulated emission of surface plasmons , 2010, 1004.0135.

[12]  Bradley F. Habenicht,et al.  Ab initio study of phonon-induced dephasing of plasmon excitations in silver quantum dots , 2010 .

[13]  G. Solomon,et al.  On-chip single plasmon detection. , 2010, Nano letters.

[14]  Roman Kolesov,et al.  Wave–particle duality of single surface plasmon polaritons , 2009 .

[15]  P. Guyot-Sionnest,et al.  Reduced damping of surface plasmons at low temperatures , 2009 .

[16]  Leonid Krivitsky,et al.  Demonstration of quadrature squeezed surface-plasmons in a gold waveguide , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[17]  M Paternostro,et al.  Single-photon excitation of surface plasmon polaritons. , 2008, Physical review letters.

[18]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[19]  Nicolas Gisin,et al.  Energy-time entanglement preservation in plasmon-assisted light transmission. , 2004, Physical review letters.

[20]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[21]  T. Tsuchizawa,et al.  Low loss mode size converter from 0.3 /spl mu/m square Si wire waveguides to singlemode fibres , 2002 .

[22]  J. P. Woerdman,et al.  Plasmon-assisted transmission of entangled photons , 2002, Nature.

[23]  Feldmann,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002, Physical review letters.

[24]  Mathias Scharte,et al.  Lifetime and dephasing of plasmons in Ag nanoparticles , 2001, SPIE Optics + Photonics.

[25]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[26]  J. M. Elson,et al.  Photon Interactions at a Rough Metal Surface , 1971 .