Simultaneous Support Recovery in High Dimensions: Benefits and Perils of Block $\ell _{1}/\ell _{\infty} $-Regularization
暂无分享,去创建一个
[1] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[2] M. Talagrand,et al. Probability in Banach Spaces: Isoperimetry and Processes , 1991 .
[3] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[4] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[5] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[6] Michael I. Jordan. Learning in Graphical Models , 1999, NATO ASI Series.
[7] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[8] S. Mallat. A wavelet tour of signal processing , 1998 .
[9] Eero P. Simoncelli. Bayesian Denoising of Visual Images in the Wavelet Domain , 1999 .
[10] V. Buldygin,et al. Metric characterization of random variables and random processes , 2000 .
[11] P. Massart,et al. Adaptive estimation of a quadratic functional by model selection , 2000 .
[12] M. Ledoux. The concentration of measure phenomenon , 2001 .
[13] S. Szarek,et al. Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .
[14] Jia Jie. Bayesian denoising of visual images in the wavelet domain , 2003 .
[15] Stephen J. Wright,et al. Simultaneous Variable Selection , 2005, Technometrics.
[16] D. Donoho,et al. Counting faces of randomly-projected polytopes when the projection radically lowers dimension , 2006, math/0607364.
[17] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[18] Joel A. Tropp,et al. ALGORITHMS FOR SIMULTANEOUS SPARSE APPROXIMATION , 2006 .
[19] Martin J. Wainwright,et al. Sharp thresholds for high-dimensional and noisy recovery of sparsity , 2006, ArXiv.
[20] Joel A. Tropp,et al. Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.
[21] Massimiliano Pontil,et al. Multi-Task Feature Learning , 2006, NIPS.
[22] Peng Zhao,et al. On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..
[23] Joel A. Tropp,et al. Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit , 2006, Signal Process..
[24] J. Lafferty,et al. Sparse additive models , 2007, 0711.4555.
[25] P. Zhao,et al. Grouped and Hierarchical Model Selection through Composite Absolute Penalties , 2007 .
[26] Larry A. Wasserman,et al. SpAM: Sparse Additive Models , 2007, NIPS.
[27] G. Obozinski. Joint covariate selection for grouped classification , 2007 .
[28] A. Rinaldo,et al. On the asymptotic properties of the group lasso estimator for linear models , 2008 .
[29] Larry A. Wasserman,et al. Nonparametric regression and classification with joint sparsity constraints , 2008, NIPS.
[30] Francis R. Bach,et al. Consistency of trace norm minimization , 2007, J. Mach. Learn. Res..
[31] Francis R. Bach,et al. Consistency of the group Lasso and multiple kernel learning , 2007, J. Mach. Learn. Res..
[32] Michael I. Jordan,et al. Union support recovery in high-dimensional multivariate regression , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.
[33] Han Liu,et al. On the ℓ 1 -ℓ q Regularized Regression , 2008 .
[34] Han Liu,et al. On the ℓ 1 -ℓ q Regularized Regression , 2008, 0802.1517.
[35] P. Bühlmann,et al. The group lasso for logistic regression , 2008 .
[36] N. Meinshausen,et al. LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.
[37] S. Geer,et al. On the conditions used to prove oracle results for the Lasso , 2009, 0910.0722.
[38] P. Zhao,et al. The composite absolute penalties family for grouped and hierarchical variable selection , 2009, 0909.0411.
[39] Massimiliano Pontil,et al. Taking Advantage of Sparsity in Multi-Task Learning , 2009, COLT.
[40] Martin J. Wainwright,et al. Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting , 2009, IEEE Trans. Inf. Theory.
[41] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[42] Martin J. Wainwright,et al. Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$ -Constrained Quadratic Programming (Lasso) , 2009, IEEE Transactions on Information Theory.
[43] Junzhou Huang,et al. The Benefit of Group Sparsity , 2009 .
[44] J. Lafferty,et al. High-dimensional Ising model selection using ℓ1-regularized logistic regression , 2010, 1010.0311.
[45] Martin J. Wainwright,et al. Information-Theoretic Limits on Sparse Signal Recovery: Dense versus Sparse Measurement Matrices , 2008, IEEE Transactions on Information Theory.
[46] Martin J. Wainwright,et al. Estimation of (near) low-rank matrices with noise and high-dimensional scaling , 2009, ICML.
[47] Martin J. Wainwright,et al. Minimax Rates of Estimation for High-Dimensional Linear Regression Over $\ell_q$ -Balls , 2009, IEEE Transactions on Information Theory.