Recent Fascinating Aspects of the CuAAC Click Reaction

[1]  M. Meldal,et al.  High Capacity Poly(ethylene glycol) Based Amino Polymers for Peptide and Organic Synthesis , 2004 .

[2]  K. Burgess,et al.  Base dependence in copper-catalyzed Huisgen reactions: efficient formation of bistriazoles. , 2007, Angewandte Chemie.

[3]  S. Schmid,et al.  Multivalent Display and Receptor‐Mediated Endocytosis of Transferrin on Virus‐Like Particles , 2010, Chembiochem : a European journal of chemical biology.

[4]  Manuela Grimaldi,et al.  1,4-Disubstituted-[1,2,3]triazolyl-Containing Analogues of MT-II: Design, Synthesis, Conformational Analysis, and Biological Activity , 2014, Journal of medicinal chemistry.

[5]  Jung‐Ah Shin,et al.  An efficient Cu-catalyzed azide–alkyne cycloaddition (CuAAC) reaction in aqueous medium with a zwitterionic ligand, betaine , 2017 .

[6]  N. Steinmetz,et al.  Labeling live cells by copper-catalyzed alkyne--azide click chemistry. , 2010, Bioconjugate chemistry.

[7]  Mark Bradley,et al.  Copper Catalysis in Living Systems and In Situ Drug Synthesis. , 2016, Angewandte Chemie.

[8]  M. Zhang,et al.  One-Pot Three-Component Synthesis of Enamine-Functionalized 1,2,3-Triazoles via Cu-Catalytic Azide-Alkyne Click (CuAAC) and Cu-Catalyzed Vinyl Nitrene Transfer Sequence. , 2017, Organic letters.

[9]  R. Huisgen 1,3-Dipolar Cycloadditions. Past and Future† , 1963 .

[10]  O. Prante,et al.  (18)F-glyco-RGD peptides for PET imaging of integrin expression: efficient radiosynthesis by click chemistry and modulation of biodistribution by glycosylation. , 2014, Molecular pharmaceutics.

[11]  Efficient route to C2 symmetric heterocyclic backbone modified cyclic peptides. , 2005, Organic letters.

[12]  N. Winssinger,et al.  One‐Step Derivatization of Reducing Oligosaccharides for Rapid and Live‐Cell‐Compatible Chelation‐Assisted CuAAC Conjugation , 2016, Chembiochem : a European journal of chemical biology.

[13]  S. Cockroft,et al.  Synthetically Diversified Protein Nanopores: Resolving Click Reaction Mechanisms. , 2019, ACS nano.

[14]  H. Hiemstra,et al.  CuI‐Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective , 2005 .

[15]  Brian J. Adzima,et al.  Towards understanding the kinetic behaviour and limitations in photo-induced copper(i) catalyzed azide-alkyne cycloaddition (CuAAC) reactions. , 2016, Physical chemistry chemical physics : PCCP.

[16]  F. Vilela,et al.  A flow platform for degradation-free CuAAC bioconjugation , 2018, Nature Communications.

[17]  G. Bertrand,et al.  Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne “click reaction” , 2015, Science Advances.

[18]  M. Finn,et al.  Benzimidazole and related ligands for Cu-catalyzed azide-alkyne cycloaddition. , 2007, Journal of the American Chemical Society.

[19]  Honggang Hu,et al.  Diaminodiacid-based synthesis of macrocyclic peptides using 1,2,3-triazole bridges as disulfide bond mimetics , 2017 .

[20]  Chung‐Ming Sun,et al.  One‐Pot Synthesis of Triazoloquinazolinones via Copper‐ Catalyzed Tandem Click and Intramolecular C ? H Amidation , 2014 .

[21]  G. Burley,et al.  Determining the Origin of Rate-Independent Chemoselectivity in CuAAC Reactions: An Alkyne-Specific Shift in Rate-Determining Step. , 2017, Angewandte Chemie.

[22]  Kenry,et al.  Bio-orthogonal Click Chemistry for In Vivo Bioimaging , 2019, Trends in Chemistry.

[23]  M. Meldal,et al.  Intramolecular N-Acyliminium Cascade (INAIC) Reactions in Cyclization of Peptide-Like Molecules , 2016 .

[24]  K. Kirshenbaum,et al.  Peptide cyclization and cyclodimerization by Cu(I)-mediated azide-alkyne cycloaddition. , 2009, The Journal of organic chemistry.

[25]  C. Tung,et al.  Copper(I)-Catalyzed Three-Component Click/Persulfuration Cascade: Regioselective Synthesis of Triazole Disulfides. , 2018, Organic letters.

[26]  A. K. Hansen,et al.  Computational Evolution of Threonine-Rich β-Hairpin Peptides Mimicking Specificity and Affinity of Antibodies , 2019, ACS central science.

[27]  Jun Wang,et al.  Copper-catalyzed click reaction on/in live cells , 2016, Chemical science.

[28]  P. Quinodoz,et al.  A one carbon staple for orthogonal copper-catalyzed azide-alkyne cycloadditions. , 2016, Chemical communications.

[29]  Takashi Hayashi,et al.  Site-specific Modification of Proteins through N-terminal Azide-labeling and a Chelation-assisted CuAAC Reaction. , 2019, Bioconjugate chemistry.

[30]  J. Chen,et al.  Copper-Catalyzed Decarboxylative/Click Cascade Reaction: Regioselective Assembly of 5-Selenotriazole Anticancer Agents. , 2018, Organic letters.

[31]  M. Finn,et al.  Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. , 2010, Journal of the American Chemical Society.

[32]  Micah S. Ziegler,et al.  Dicopper Cu(I)Cu(I) and Cu(I)Cu(II) Complexes in Copper-Catalyzed Azide-Alkyne Cycloaddition. , 2017, Journal of the American Chemical Society.

[33]  C. Porco,et al.  Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions , 2013, Science.

[34]  Jin Yang,et al.  Highly Stable Copper(I)-Based Metal-Organic Framework Assembled with Resorcin[4]arene and Polyoxometalate for Efficient Heterogeneous Catalysis of Azide-Alkyne "Click" Reaction. , 2018, ACS applied materials & interfaces.

[35]  F. Taran,et al.  Scalable and practical synthesis of clickable Cu-chelating azides. , 2017, Chemical communications.

[36]  Siheng Li,et al.  Extent of the Oxidative Side Reactions to Peptides and Proteins During the CuAAC Reaction. , 2016, Bioconjugate chemistry.

[37]  Wenjing Ye,et al.  Synthesis of Mono- and Binuclear Cu(II) Complexes Bearing Unsymmetrical Bipyridine–Pyrazole–Amine Ligand and Their Applications in Azide–Alkyne Cycloaddition , 2017 .

[38]  P. Pale,et al.  When CuAAC 'Click Chemistry' goes heterogeneous , 2016 .

[39]  C. Tung,et al.  Bench-Stable 5-Stannyl Triazoles by a Copper(I)-Catalyzed Interrupted Click Reaction: Bridge to Trifluoromethyltriazoles and Trifluoromethylthiotriazoles. , 2017, Organic letters.

[40]  M. Finn,et al.  Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction. , 2005, Angewandte Chemie.

[41]  J. Koponen,et al.  Synthesis of the copper chelator TGTA and evaluation of its ability to protect biomolecules from copper induced degradation during copper catalyzed azide-alkyne bioconjugation reactions. , 2016, Organic & biomolecular chemistry.

[42]  Ligand‐Assisted Dual‐Site Click Labeling of EGFR on Living Cells , 2014, Chembiochem : a European journal of chemical biology.

[43]  P. Camargo,et al.  Cu2O spheres as an efficient source of catalytic Cu(I) species for performing azide-alkyne click reactions , 2017 .

[44]  A. Madsen,et al.  Diversity-Oriented Syntheses by Combining CuAAC and Stereoselective INCIC Reactions with Peptides. , 2017, Chemistry.

[45]  Peng R. Chen,et al.  A genetically encoded multifunctional unnatural amino acid for versatile protein manipulations in living cells† †Electronic supplementary information (ESI) available: Full experimental details and characterization data of all the new compounds. See DOI: 10.1039/c6sc02615j Click here for additional d , 2016, Chemical science.

[46]  K. L. Martinez,et al.  Covalent and Stable CuAAC Modification of Silicon Surfaces for Control of Cell Adhesion , 2015, Chembiochem : a European journal of chemical biology.

[47]  Andrew L. Ferguson,et al.  Enzyme-like Click Catalysis by a Copper-Containing Single-Chain Nanoparticle. , 2018, Journal of the American Chemical Society.

[48]  M. Finn,et al.  Discovery and characterization of catalysts for azide-alkyne cycloaddition by fluorescence quenching. , 2004, Journal of the American Chemical Society.

[49]  M. Meldal Polymer “Clicking” by CuAAC Reactions , 2008 .

[50]  Amy C Yan,et al.  Biocompatible copper(I) catalysts for in vivo imaging of glycans. , 2010, Journal of the American Chemical Society.

[51]  J. Fossey,et al.  Asymmetric Copper-Catalyzed Azide–Alkyne Cycloadditions , 2016 .

[52]  C. Tung,et al.  Copper(I)-Catalyzed Interrupted Click Reaction: Synthesis of Diverse 5-Hetero-Functionalized Triazoles. , 2016, Angewandte Chemie.

[53]  Wei Zhou,et al.  Copper Mediated Three‐Component Reactions of Alkynes, Azides, and Propargylic Carbonates: Synthesis of 5‐Allenyl‐1,2,3‐Triazoles , 2018 .

[54]  Scott T. Clarke,et al.  Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. , 2012, Angewandte Chemie.

[55]  Michal Hocek,et al.  Turning Off Transcription with Bacterial RNA Polymerase through CuAAC Click Reactions of DNA Containing 5-Ethynyluracil. , 2018, Chemistry.

[56]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[57]  J. Pelletier,et al.  One-pot peptide and protein conjugation: a combination of enzymatic transamidation and click chemistry. , 2016, Chemical communications.

[58]  Lei Zhu,et al.  Synthesis of 5-iodo-1,4-disubstituted-1,2,3-triazoles mediated by in situ generated copper(I) catalyst and electrophilic triiodide ion. , 2012, The Journal of organic chemistry.

[59]  Zhiyuan Zhang,et al.  Development and Applications of the Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) as a Bioorthogonal Reaction , 2016, Molecules.

[60]  S. Dann,et al.  Experimental evidence for the involvement of dinuclear alkynylcopper(I) complexes in alkyne-azide chemistry. , 2010, Chemistry.

[61]  C. Tung,et al.  Copper(I)-Catalyzed Three-Component Click/Alkynylation: One-Pot Synthesis of 5-Alkynyl-1,2,3-triazoles. , 2016, Organic letters.

[62]  M. Lautens,et al.  Intramolecular Copper(I)-Catalyzed Interrupted Click/Acylation Domino Reaction. , 2019, Angewandte Chemie.

[63]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[64]  M. Meldal,et al.  Recent advances in covalent, site-specific protein immobilization , 2016, F1000Research.

[65]  Lei Zhu,et al.  On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. , 2016, Chemical record.

[66]  M. Meldal,et al.  Dipolar Cycloaddition Reactions in Peptide Chemistry , 2010 .

[67]  G. C. Tsui,et al.  Copper(I)-Catalyzed Interrupted Click Reaction with TMSCF3: Synthesis of 5-Trifluoromethyl 1,2,3-Triazoles. , 2017, Organic letters.

[68]  Xiaoming Feng,et al.  Chiral Guanidine/Copper Catalyzed Asymmetric Azide-Alkyne Cycloaddition/[2+2] Cascade Reaction. , 2018, Angewandte Chemie.

[69]  Dali Yang,et al.  Low-Pressure Flow Chemistry of CuAAC Click Reaction Catalyzed by Nanoporous AuCu Membrane. , 2018, ACS applied materials & interfaces.

[70]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[71]  I. Carvalho,et al.  Application of copper(I)-catalysed azide/alkyne cycloaddition (CuAAC) ‘click chemistry’ in carbohydrate drug and neoglycopolymer synthesis , 2010 .

[72]  R. Field,et al.  Carbohydrate CuAAC click chemistry for therapy and diagnosis. , 2016, Carbohydrate research.

[73]  K. L. Martinez,et al.  Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications. , 2016, Chemistry.

[74]  Morten Meldal,et al.  Cu-catalyzed azide-alkyne cycloaddition. , 2008, Chemical reviews.

[75]  He Zhu,et al.  Comparative analysis of Cu (I)‐catalyzed alkyne‐azide cycloaddition (CuAAC) and strain‐promoted alkyne‐azide cycloaddition (SPAAC) in O‐GlcNAc proteomics , 2016, Electrophoresis.

[76]  Philipp Michael,et al.  CuAAC-Based Click Chemistry in Self-Healing Polymers. , 2017, Accounts of chemical research.

[77]  D. Dieterich,et al.  Click Chemistry (CuAAC) and Detection of Tagged de novo Synthesized Proteins in Drosophila. , 2019, Bio-protocol.

[78]  M. Finn,et al.  Head-to-tail peptide cyclodimerization by copper-catalyzed azide-alkyne cycloaddition. , 2005, Angewandte Chemie.

[79]  H. Heaney,et al.  Mechanistic Investigations of Copper(I)-Catalysed Alkyne–Azide Cycloaddition Reactions , 2012 .

[80]  Siheng Li,et al.  Intermediates Stabilized by Tris(triazolylmethyl)amines in the CuAAC Reaction. , 2017, Chemistry.

[81]  Qiang Zhang,et al.  Synthesis and Assembly of Laccase-Polymer Giant Amphiphiles by Self-Catalyzed CuAAC Click Chemistry. , 2018, Biomacromolecules.

[82]  M. Meldal,et al.  Simultaneous “One Pot” Expressed Protein Ligation and CuI‐Catalyzed Azide/Alkyne Cycloaddition for Protein Immobilization , 2011, Chembiochem : a European journal of chemical biology.

[83]  Xiulin Zhu,et al.  Recent advances of CuAAC click reaction in building cyclic polymer , 2017, Chinese Journal of Polymer Science.

[84]  W. Binder,et al.  The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications. , 2019, Macromolecular rapid communications.

[85]  F. Alonso,et al.  Copper Nanoparticles in Click Chemistry. , 2015, Accounts of chemical research.

[86]  C. Vízler,et al.  Semisynthesis of membrane-anchored cholesteryl lipoproteins on live cell surface by azide–alkyne click reaction , 2016 .

[87]  M. Meldal,et al.  Alkyne‐Azide Reactions , 2014 .

[88]  Z. Mester,et al.  Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. , 2011, Journal of the American Chemical Society.

[89]  M. Ruiz,et al.  Regio- and diastereoselective synthesis of β-lactam-triazole hybrids via Passerini/CuAAC sequence. , 2012, The Journal of organic chemistry.

[90]  M. Meldal,et al.  Maintaining biological activity by using triazoles as disulfide bond mimetics. , 2011, Angewandte Chemie.

[91]  M. Turks,et al.  Easy Access to Isomeric 7-Deazapurine–1,2,3-Triazole Conjugates via SNAr and CuAAC Reactions of 2,6-Diazido-7-deazapurines , 2017, Synlett.

[92]  M. Finn,et al.  Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. , 2009, Angewandte Chemie.

[93]  J. Naismith,et al.  Enzymatic Macrocyclization of 1,2,3‐Triazole Peptide Mimetics , 2016, Angewandte Chemie.

[94]  F. Rominger,et al.  A Fluxional Copper Acetylide Cluster in CuAAC Catalysis. , 2015, Angewandte Chemie.

[95]  Hua-Li Qin,et al.  2-Azidoethane-1-sulfonylfluoride (ASF): A VersatileBis-clickable Reagent for SuFEx and CuAAC Click Reactions , 2019, European Journal of Organic Chemistry.

[96]  C. Cai,et al.  Anaerobic conditions to reduce oxidation of proteins and to accelerate the copper-catalyzed "Click" reaction with a water-soluble bis(triazole) ligand. , 2011, Chemical communications.

[97]  M. Meldal,et al.  Peptidotriazoles: Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions on Solid-Phase , 2001 .

[98]  S. Pharande,et al.  Synthesis of Tris-Heterocycles via a Cascade IMCR/Aza Diels-Alder + CuAAC Strategy , 2019, Front. Chem..

[99]  M. Meldal,et al.  Semisynthesis of an Active Enzyme by Quantitative Click Ligation. , 2019, Bioconjugate chemistry.

[100]  S. Ghosh,et al.  Pristine Graphene–Copper(II) Oxide Nanocatalyst: A Novel and Green Approach in CuAAC Reactions , 2017 .

[101]  K. James,et al.  CuAAC macrocyclization: high intramolecular selectivity through the use of copper-tris(triazole) ligand complexes. , 2011, Organic letters.

[102]  C. Iacobucci,et al.  Dinuclear copper intermediates in copper(I)-catalyzed azide-alkyne cycloaddition directly observed by electrospray ionization mass spectrometry. , 2015, Angewandte Chemie.

[103]  Stepwise triple-click functionalization of synthetic peptides† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8ob01617h , 2018, Organic & biomolecular chemistry.

[104]  Q. Song,et al.  A facile synthesis of diverse 5-arylated triazoles via a Cu-catalyzed oxidative interrupted click reaction with arylboronic acids in air , 2018 .

[105]  L. Ackermann,et al.  Regioselective syntheses of fully-substituted 1,2,3-triazoles: the CuAAC/C-H bond functionalization nexus. , 2010, Organic & biomolecular chemistry.

[106]  Q. Cai,et al.  A CuAAC/Ullmann C-C coupling tandem reaction: copper-catalyzed reactions of organic azides with N-(2-iodoaryl)propiolamides or 2-iodo-N-(prop-2-ynyl)benzenamines. , 2012, Organic letters.

[107]  Zhiyuan Zhang,et al.  All-in-One azides: empowered click reaction for in vivo labeling and imaging of biomolecules. , 2016, Chemical communications.

[108]  G. Burley,et al.  Strategy for Conditional Orthogonal Sequential CuAAC Reactions Using a Protected Aromatic Ynamine. , 2017, The Journal of organic chemistry.

[109]  Xingyu Jiang,et al.  Click Chemistry-Mediated Nanosensors for Biochemical Assays , 2016, Theranostics.

[110]  Yılmaz Özkılıç,et al.  A DFT Study on the Binuclear CuAAC Reaction: Mechanism in Light of New Experiments , 2016 .

[111]  J. Hein,et al.  Measuring and Suppressing the Oxidative Damage to DNA During Cu(I)-Catalyzed Azide-Alkyne Cycloaddition. , 2016, Bioconjugate chemistry.

[112]  T. Ogoshi,et al.  Supramolecular chemistry of pillar[n]arenes functionalised by a copper(i)-catalysed alkyne-azide cycloaddition "click" reaction. , 2017, Chemical communications.

[113]  M. Meldal,et al.  Catalytic Click Reactions , 2017 .

[114]  Thomas E Nielsen,et al.  Click-Chemistry-Mediated Synthesis of Selective Melanocortin Receptor 4 Agonists. , 2017, Journal of medicinal chemistry.

[115]  M. Meldal,et al.  Click-Chemistry of Polymersomes on Nanoporous Polymeric Surfaces , 2016 .

[116]  N. Sareen,et al.  A dinuclear copper(i) thiodiacetate complex as an efficient and reusable 'click' catalyst for the synthesis of glycoconjugates. , 2017, Dalton transactions.

[117]  P G Schultz,et al.  Expanding the Genetic Code of Escherichia coli , 2001, Science.

[118]  Anabel E. Lanterna,et al.  Click Chemistry: Mechanistic Insights into the Role of Amines Using Single-Molecule Spectroscopy , 2017 .

[119]  Wen-Mei Sun,et al.  Heterothiometallic clusters as robust and efficient copper(I) catalysts for azide–alkyne [3 + 2] cycloadditions , 2016 .

[120]  Andrea Gini,et al.  Double Cu-Catalyzed Direct Csp3 -H Azidation/CuAAC Reaction: A Direct Approach towards Demanding Triazole Conjugates. , 2019, Chemistry.

[121]  Wenjing Ye,et al.  Highly active binuclear Cu(II) catalyst bearing an unsymmetrical bipyridine-pyrazole-amine ligand for the azide-alkyne cycloaddition reaction , 2016 .

[122]  S. Moya,et al.  Exposure to air boosts CuAAC reactions catalyzed by PEG-stabilized Cu nanoparticles. , 2017, Chemical communications.

[123]  H. Leonhardt,et al.  TuPPL: Tub-tag mediated C-terminal protein-protein-ligation using complementary click-chemistry handles. , 2019, Organic & biomolecular chemistry.

[124]  K. Sharpless,et al.  Modular click chemistry libraries for functional screens using a diazotizing reagent , 2019, Nature.

[125]  X. Qu,et al.  A Biocompatible Heterogeneous MOF-Cu Catalyst for In Vivo Drug Synthesis in Targeted Subcellular Organelles. , 2019, Angewandte Chemie.

[126]  F. Rominger,et al.  Dinuclear thiazolylidene copper complex as highly active catalyst for azid–alkyne cycloadditions , 2016, Beilstein journal of organic chemistry.