Simultaneous inference for the mean function based on dense functional data

A polynomial spline estimator is proposed for the mean function of dense functional data together with a simultaneous confidence band which is asymptotically correct. In addition, the spline estimator and its accompanying confidence band enjoy oracle efficiency in the sense that they are asymptotically the same as if all random trajectories are observed entirely and without errors. The confidence band is also extended to the difference of mean functions of two populations of functional data. Simulation experiments provide strong evidence that corroborates the asymptotic theory while computing is efficient. The confidence band procedure is illustrated by analysing the near-infrared spectroscopy data.

[1]  H. Müller,et al.  Functional Data Analysis for Sparse Longitudinal Data , 2005 .

[2]  Jing Wang,et al.  POLYNOMIAL SPLINE CONFIDENCE BANDS FOR REGRESSION CURVES , 2009 .

[3]  P. Hall,et al.  Properties of principal component methods for functional and longitudinal data analysis , 2006, math/0608022.

[4]  Raymond J. Carroll,et al.  A SIMULTANEOUS CONFIDENCE BAND FOR SPARSE LONGITUDINAL REGRESSION , 2012 .

[5]  Florentina Bunea,et al.  Adaptive inference for the mean of a Gaussian process in functional data , 2011 .

[6]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[7]  Li Wang,et al.  SPLINE ESTIMATION OF SINGLE-INDEX MODELS , 2009 .

[8]  Michel Verleysen,et al.  High-Dimensional Data , 2007 .

[9]  Lan Xue,et al.  ADDITIVE COEFFICIENT MODELING VIA POLYNOMIAL SPLINE , 2005 .

[10]  Lijian Yang,et al.  Spline-backfitted kernel smoothing of partially linear additive model , 2011 .

[11]  P. Révész,et al.  Strong approximations in probability and statistics , 1981 .

[12]  T. Hsing,et al.  Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data , 2010, 1211.2137.

[13]  Zhou Zhou,et al.  Simultaneous inference of linear models with time varying coefficients , 2010 .

[14]  Ricardo Fraiman,et al.  On the use of the bootstrap for estimating functions with functional data , 2006, Comput. Stat. Data Anal..

[15]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[16]  Jianqing Fan,et al.  Test of Significance When Data Are Curves , 1998 .

[17]  D. Degras,et al.  Simultaneous confidence bands for nonparametric regression with functional data , 2009, 0908.1980.

[18]  Bin Li,et al.  Classification of functional data: A segmentation approach , 2008, Comput. Stat. Data Anal..

[19]  Alois Kneip,et al.  Common Functional Principal Components , 2006, 0901.4252.

[20]  Leonard M. Adleman,et al.  Proof of proposition 3 , 1992 .

[21]  Jianhua Z. Huang,et al.  Identification of non‐linear additive autoregressive models , 2004 .

[22]  Lijian Yang,et al.  SPLINE-BACKFITTED KERNEL SMOOTHING OF ADDITIVE COEFFICIENT MODEL , 2010, Econometric Theory.

[23]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[24]  Colin O. Wu,et al.  Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves , 2001, Biometrics.

[25]  Xiaotong Shen,et al.  Local asymptotics for regression splines and confidence regions , 1998 .

[26]  H. Cardot Nonparametric estimation of smoothed principal components analysis of sampled noisy functions , 2000 .

[27]  Tailen Hsing,et al.  DECIDING THE DIMENSION OF EFFECTIVE DIMENSION REDUCTION SPACE FOR FUNCTIONAL AND HIGH-DIMENSIONAL DATA , 2010, 1011.2620.

[28]  Wei Biao Wu,et al.  CONFIDENCE BANDS IN NONPARAMETRIC TIME SERIES REGRESSION , 2008, 0808.1010.

[29]  B. Silverman,et al.  Functional Data Analysis , 1997 .