Periodic Metro Scheduling

We introduce the { extsc{Periodic Metro Sched-ul-ing}} ({ extsc{PMS}}) problem, which aims in generating a periodic timetable for a given set of routes and a given time period, in such a way that t ...

[1]  Alan A. Bertossi,et al.  On some matching problems arising in vehicle scheduling models , 1987, Networks.

[2]  Vijay Kumar,et al.  Approximating Circular Arc Colouring and Bandwidth Allocation in All-Optical Ring Networks , 1998, APPROX.

[3]  Peter Widmayer,et al.  Railway Delay Management: Exploring Its Algorithmic Complexity , 2004, SWAT.

[4]  Satish Rao,et al.  Efficient access to optical bandwidth wavelength routing on directed fiber trees, rings, and trees of rings , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[5]  Matteo Fischetti,et al.  A Branch-and-Cut Algorithm for the Multiple Depot Vehicle Scheduling Problem , 2001 .

[6]  Leo G. Kroon,et al.  A rolling stock circulation model for combining and splitting of passenger trains , 2006, Eur. J. Oper. Res..

[7]  I. A. Karapetian,et al.  On the coloring of circular arc graphs , 1980 .

[8]  Rolf H. Möhring,et al.  A Case Study in Periodic Timetabling , 2002, ATMOS.

[9]  Fanica Gavril,et al.  Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Maximum Independent Set of a Chordal Graph , 1972, SIAM J. Comput..

[10]  A. Löbel Optimale Vehicle Scheduling in Public Transit , 1997 .

[11]  Leo G. Kroon,et al.  A Variable Trip Time Model for Cyclic Railway Timetabling , 2003, Transp. Sci..

[12]  Leon Peeters,et al.  The Computational Complexity of Delay Management , 2005, WG.

[13]  Anita Schöbel,et al.  A Model for the Delay Management Problem based on Mixed-Integer-Programming , 2001, ATMOS.

[14]  D. R. Fulkerson,et al.  MINIMIZING THE NUMBER OF CARRIERS TO MEET A FIXED SCHEDULE , 1954 .

[15]  Gary L. Miller,et al.  The Complexity of Coloring Circular Arcs and Chords , 1980, SIAM J. Algebraic Discret. Methods.

[16]  Alexander Schrijver Routing and timetabling by topological search , 1998 .

[17]  Thomas Erlebach,et al.  On the Complexity of Train Assignment Problems , 2001, ISAAC.

[18]  Christian Liebchen A Cut-Based Heuristic to Produce Almost Feasible Periodic Railway Timetables , 2005, WEA.

[19]  Stephan Eidenbenz,et al.  Train Routing Algorithms: Concepts, Design Choises, and Practical Considerations , 2003, ALENEX.

[20]  Stephan Eidenbenz,et al.  Flexible Train Rostering , 2003, ISAAC.

[21]  Klaus Jansen,et al.  Optimal Wavelength Routing on Directed Fiber Trees , 1999, Theor. Comput. Sci..

[22]  Lex Schrijver,et al.  Minimum circulation of railway stock , 1993 .

[23]  Errol L. Lloyd,et al.  on the K-coloring of Intervals , 1991, Discrete Applied Mathematics.

[24]  Michael R. Bussieck,et al.  Discrete optimization in public rail transport , 1997, Math. Program..

[25]  Walter Ukovich,et al.  A Mathematical Model for Periodic Scheduling Problems , 1989, SIAM J. Discret. Math..