VAPOR: A Visualization Package Tailored to Analyze Simulation Data in Earth System Science

Visualization is an essential tool for analysis of data and communication of findings in the sciences, and the Earth System Sciences (ESS) are no exception. However, within ESS, specialized visualization requirements and data models, particularly for those data arising from numerical models, often make general purpose visualization packages difficult, if not impossible, to use effectively. This paper presents VAPOR: a domain-specific visualization package that targets the specialized needs of ESS modelers, particularly those working in research settings where highly-interactive exploratory visualization is beneficial. We specifically describe VAPOR’s ability to handle ESS simulation data from a wide variety of numerical models, as well as a multi-resolution representation that enables interactive visualization on very large data while using only commodity computing resources. We also describe VAPOR’s visualization capabilities, paying particular attention to features for geo-referenced data and advanced rendering algorithms suitable for time-varying, 3D data. Finally, we illustrate VAPOR’s utility in the study of a numerically- simulated tornado. Our results demonstrate both ease-of-use and the rich capabilities of VAPOR in such a use case.

[1]  William A. Pearlman,et al.  Embedded and efficient low-complexity hierarchical image coder , 1998, Electronic Imaging.

[2]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Wei Huang,et al.  NCAR Command Language (NCL) , 2012 .

[4]  Aaron Knoll,et al.  OSPRay - A CPU Ray Tracing Framework for Scientific Visualization , 2017, IEEE Transactions on Visualization and Computer Graphics.

[5]  Raymond L. Orbach Computational Science: A Research Methodology for the 21st Century , 2004 .

[6]  Todd D. Ringler,et al.  A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering , 2012 .

[7]  P. Mininni,et al.  Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation , 2007 .

[8]  Rüdiger Westermann,et al.  Visualization in Meteorology—A Survey of Techniques and Tools for Data Analysis Tasks , 2018, IEEE Transactions on Visualization and Computer Graphics.

[9]  Leigh Orf,et al.  Evolution of a Long-Track Violent Tornado within a Simulated Supercell , 2017 .

[10]  Hank Childs,et al.  Performance Impacts of In Situ Wavelet Compression on Scientific Simulations , 2017, ISAV@SC.

[11]  David H. Laidlaw,et al.  The application visualization system: a computational environment for scientific visualization , 1989, IEEE Computer Graphics and Applications.

[12]  Hank Childs,et al.  Data Reduction Techniques for Simulation, Visualization and Data Analysis , 2018, Comput. Graph. Forum.

[13]  Hank Childs,et al.  VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data , 2011 .

[14]  William A. Pearlman,et al.  Lossy-To-Lossless Block-Based Compression of Hyperspectral Volumetric Data , 2006, 2006 International Conference on Image Processing.

[15]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[16]  Rüdiger Westermann,et al.  Three-dimensional visualization of ensemble weather forecasts – Part 1: The visualization tool Met.3D (version 1.0) , 2015 .

[17]  John Anderson,et al.  Exploring Coupled Atmosphere-Ocean Models Using Vis5D , 1996, Int. J. High Perform. Comput. Appl..

[18]  John P. Clyne,et al.  A prototype discovery environment for analyzing and visualizing terascale turbulent fluid flow simulations , 2005, IS&T/SPIE Electronic Imaging.

[19]  Jordan G. Powers,et al.  A Description of the Advanced Research WRF Version 2 , 2005 .

[20]  Chris R. Johnson,et al.  NHI-NSF Visualization Research Challenges Report , 2005 .

[21]  Philip W. Jones,et al.  A multi-resolution approach to global ocean modeling , 2013 .

[22]  Dean N. Williams,et al.  The Flexible Climate Data Analysis Tools (CDAT) for Multi-model Climate Simulation Data , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[23]  William E. Lorensen,et al.  VISAGE: an object-oriented scientific visualization system , 1992, Proceedings Visualization '92.

[24]  Stephan Hoyer,et al.  xarray: N-D labeled arrays and datasets in Python , 2017 .

[25]  C. C. Law,et al.  ParaView: An End-User Tool for Large-Data Visualization , 2005, The Visualization Handbook.

[26]  Joseph Hamman,et al.  Pangeo: Community tools for analysis of Earth Science Data in the Cloud , 2018 .

[27]  Hank Childs,et al.  Spatiotemporal Wavelet Compression for Visualization of Scientific Simulation Data , 2017, 2017 IEEE International Conference on Cluster Computing (CLUSTER).

[28]  Brian E. Doty,et al.  Geophysical data analysis and visualization using the Grid Analysis and Display System , 1995 .

[29]  David A. Santek,et al.  McIDAS-V: a powerful data analysis and visualization tool for multi and hyperspectral environmental satellite data , 2008, Optical Engineering + Applications.

[30]  Kenny Gruchalla,et al.  Evaluating the efficacy of wavelet configurations on turbulent-flow data , 2015, 2015 IEEE 5th Symposium on Large Data Analysis and Visualization (LDAV).

[31]  Matthew Rocklin,et al.  Dask: Parallel Computation with Blocked algorithms and Task Scheduling , 2015, SciPy.

[32]  D. Hilbert Ueber die stetige Abbildung einer Line auf ein Flächenstück , 1891 .

[33]  Y. Meyer,et al.  Wavelets and Filter Banks , 1991 .

[34]  P. D. Mininni,et al.  Direct Simulations of Helical Hall-MHD Turbulence and Dynamo Action , 2004, astro-ph/0410274.

[35]  William Schroeder,et al.  The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .