The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy

Through a simple physical argument we show that the slant optical depth through the atmosphere of a ‘hot Jupiter’ planet is ∼35‐90 times greater than the normal optical depth. This not unexpected result has direct consequences for the method of transmission spectroscopy for characterizing the atmospheres of transiting giant planets. The atmospheres of these planets likely contain minor condensates and hazes, which at normal viewing geometry have negligible optical depth, but at slant viewing geometry have appreciable optical depth that can obscure absorption features of gaseous atmospheric species. We identify several possible condensates. We predict that this is a general masking mechanism for all planets, not just for HD 209458b, and will lead to weaker than expected or undetected absorption features. Constraints on an atmosphere from transmission spectroscopy are not the same as constraints on an atmosphere at normal viewing geometry. Ke yw ords: radiative transfer ‐ planetary systems.

[1]  A. Burrows,et al.  On the Indirect Detection of Sodium in the Atmosphere of the Planetary Companion to HD 209458 , 2002, astro-ph/0208263.

[2]  A. Lacis,et al.  Belt-zone variations in the Jovian cloud structure , 1994 .

[3]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[4]  M. Tomasko,et al.  Observations of the limb darkening of jupiter at ultraviolet wavelengths and constraints on the properties and distribution of stratospheric aerosols , 1986 .

[5]  A. Burrows,et al.  Theory of Extrasolar Giant Planet Transits , 2001, astro-ph/0101024.

[6]  Sara Seager,et al.  On the Insignificance of Photochemical Hydrocarbon Aerosols in the Atmospheres of Close-in Extrasolar Giant Planets , 2004 .

[7]  T. Brown Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres , 2001, astro-ph/0101307.

[8]  Modeling the Formation of Clouds in Brown Dwarf Atmospheres , 2003 .

[9]  Sara Seager,et al.  The Changing Face of the Extrasolar Giant Planet HD 209458b , 2002, astro-ph/0209227.

[10]  J. Pollack,et al.  An Analysis of Neptune ' s Stratospheric Haze Using High-Phase-Angle Voyager Images , 2022 .

[11]  David R. Alexander,et al.  THE LIMITING EFFECTS OF DUST IN BROWN DWARF MODEL ATMOSPHERES , 2001 .

[12]  M. Zeilik,et al.  Cool Stars, Stellar Systems, and the Sun , 1986 .

[13]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[14]  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[15]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[16]  B. Fegley,et al.  Chemical Models of the Deep Atmospheres of Jupiter and Saturn , 1994 .

[17]  D. Senske,et al.  Jovian Stratospheric Hazes: The High Phase Angle View from Galileo , 1999 .

[18]  M. Marley,et al.  From Giant Planets to Cool Stars , 1999 .

[19]  Adam Burrows,et al.  Theoretical Spectra and Atmospheres of Extrasolar Giant Planets , 2003 .

[20]  M. Mayor,et al.  An extended upper atmosphere around the extrasolar planet HD209458b , 2003, Nature.

[21]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[22]  R. P. Butler,et al.  A Transiting “51 Peg-like” Planet , 2000, The Astrophysical journal.

[23]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[24]  Michael H. Wong,et al.  Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets , 2003 .

[25]  A time-dependent radiative model of HD 209458b , 2004, astro-ph/0409468.

[26]  M. Tomasko,et al.  Clouds, aerosols, and photochemistry in the Jovian atmosphere , 1986 .

[27]  P. J. Schinder,et al.  Temperatures, Winds, and Composition in the Saturnian System , 2005, Science.

[28]  S. Seager,et al.  Clouds and chemistry: Ultracool dwarf atmospheric properties from optical and infrared colors , 2002 .

[29]  R. Dmowska,et al.  International Geophysics Series , 1992 .

[30]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[31]  Curtis S. Cooper,et al.  Dynamic Meteorology at the Photosphere of HD 209458b , 2005, astro-ph/0502476.

[32]  Drake Deming,et al.  A New Search for Carbon Monoxide Absorption in the Transmission Spectrum of the Extrasolar Planet HD 209458b , 2004, astro-ph/0412436.

[33]  T. Encrenaz,et al.  Models of the ISO 3-μm Reflection Spectrum of Jupiter☆ , 1998 .

[34]  John W. Mason Astrophysics update 2 , 2006 .