A Coarse Space Construction Based on Local Dirichlet-to-Neumann Maps
暂无分享,去创建一个
Hua Xiang | Frédéric Nataf | Victorita Dolean | Nicole Spillane | Hua Xiang | F. Nataf | N. Spillane | V. Dolean
[1] O. Widlund,et al. Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions , 1994 .
[2] Owe Axelsson,et al. Generalized Augmented Matrix Preconditioning Approach and its Application to Iterative Solution of Ill-Conditioned Algebraic Systems , 2000, SIAM J. Matrix Anal. Appl..
[3] M. Gander,et al. Why Restricted Additive Schwarz Converges Faster than Additive Schwarz , 2003 .
[4] Olof B. Widlund,et al. An Overlapping Schwarz Algorithm for Almost Incompressible Elasticity , 2009, SIAM J. Numer. Anal..
[5] Andrea Toselli,et al. Domain decomposition methods : algorithms and theory , 2005 .
[6] Frédéric Nataf,et al. Optimal Interface Conditions for Domain Decomposition Methods , 1994 .
[7] J. Meijerink,et al. An Efficient Preconditioned CG Method for the Solution of a Class of Layered Problems with Extreme Contrasts in the Coefficients , 1999 .
[8] Barry F. Smith,et al. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .
[9] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[10] Robert Scheichl,et al. Scaling up through domain decomposition , 2009 .
[11] Martin J. Gander,et al. Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..
[12] Robert Scheichl,et al. Analysis of FETI methods for multiscale PDEs , 2008, Numerische Mathematik.
[13] Reinhard Nabben,et al. Deflation and Balancing Preconditioners for Krylov Subspace Methods Applied to Nonsymmetric Matrices , 2008, SIAM J. Matrix Anal. Appl..
[14] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[15] Reinhard Nabben,et al. Algebraic Multilevel Krylov Methods , 2009, SIAM J. Sci. Comput..
[16] J. Meijerink,et al. The construction of projection vectors for a deflated ICCG method applied to problems with extreme contrasts in the coefficients , 2001 .
[17] Cornelis Vuik,et al. Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods , 2009, J. Sci. Comput..
[18] Frédéric Magoulès,et al. Algebraic approximation of Dirichlet-to-Neumann maps for the equations of linear elasticity , 2006 .
[19] Xiao-Chuan Cai,et al. A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..
[20] Zi-Cai Li,et al. Schwarz Alternating Method , 1998 .
[21] J. Mandel. Balancing domain decomposition , 1993 .
[22] O. Widlund,et al. Hybrid domain decomposition algorithms for compressible and almost incompressible elasticity , 2009 .
[23] Martin J. Gander,et al. Optimized Multiplicative, Additive, and Restricted Additive Schwarz Preconditioning , 2007, SIAM J. Sci. Comput..
[24] Cornelis Vuik,et al. A Comparison of Two-Level Preconditioners Based on Multigrid and Deflation , 2010, SIAM J. Matrix Anal. Appl..
[25] José F. Escobar. The Geometry of the First Non-zero Stekloff Eigenvalue , 1997 .
[26] J. Pasciak,et al. The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .
[27] R. Nicolaides. Deflation of conjugate gradients with applications to boundary value problems , 1987 .
[28] Marian Brezina,et al. Balancing domain decomposition for problems with large jumps in coefficients , 1996, Math. Comput..