Bifurcations of patterned solutions in the diffusive Lengyel-Epstein system of Cima chemical reactions
暂无分享,去创建一个
Junjie Wei | Junping Shi | Fengqi Yi | Junjie Wei | Junping Shi | Fengqi Yi | Jiayin Jin | Jiayin Jin
[1] N. Rashevsky,et al. Mathematical biology , 1961, Connecticut medicine.
[2] Abraham Trembley. Mémoires, pour servir à l'histoire d'un genre de polypes d'eau douce, à bras en forme de cornes , 1975 .
[3] 西浦 廉政,et al. Global structure of bifurcating solutions of some reaction-diffusion systems , 1982 .
[4] Izumi Takagi,et al. Point-condensation for a reaction-diffusion system , 1986 .
[5] H. Lenhoff,et al. Hydra and the Birth of Experimental Biology, 1744: Abraham Trembley's Memoires Concerning the Polyps , 1986 .
[6] A. M. Turing,et al. The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.
[7] I. Epstein,et al. Modeling of Turing Structures in the Chlorite—Iodide—Malonic Acid—Starch Reaction System , 1991, Science.
[8] J. Boissonade,et al. Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction , 1991 .
[9] I. Epstein,et al. A chemical approach to designing Turing patterns in reaction-diffusion systems. , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[10] David J. Wollkind,et al. Weakly nonlinear stability analyses of one-dimensional Turing pattern formation in activator-inhibitor/immobilizer model systems , 1995 .
[11] Jianhong Wu. Theory and Applications of Partial Functional Differential Equations , 1996 .
[12] P. Maini,et al. Spatial pattern formation in chemical and biological systems , 1997 .
[13] Jianhong Wu. SYMMETRIC FUNCTIONAL DIFFERENTIAL EQUATIONS AND NEURAL NETWORKS WITH MEMORY , 1998 .
[14] I. Epstein,et al. An Introduction to Nonlinear Chemical Dynamics , 1998 .
[15] Stephen L. Judd,et al. Simple and superlattice Turing patterns in reaction-diffusion systems: bifurcation, bistability, and parameter collapse , 1998, patt-sol/9807002.
[16] Junping Shi,et al. Persistence and Bifurcation of Degenerate Solutions , 1999 .
[17] David J. Wollkind,et al. Chemical Turing Pattern Formation Analyses: Comparison of Theory with Experiment , 2000, SIAM J. Appl. Math..
[18] James D. Murray,et al. Spatial models and biomedical applications , 2003 .
[19] Jaeduck Jang,et al. Global Bifurcation and Structure of Turing Patterns in the 1-D Lengyel–Epstein Model , 2004 .
[20] Wei-Ming Ni,et al. Turing patterns in the Lengyel-Epstein system for the CIMA reaction , 2005 .
[21] Junjie Wei,et al. Diffusion-driven instability and bifurcation in the Lengyel-Epstein system , 2008 .
[22] Sze-Bi Hsu,et al. Relaxation , 2021, Graduate Studies in Mathematics.
[23] Junping Shi,et al. On global bifurcation for quasilinear elliptic systems on bounded domains , 2009 .
[24] Junjie Wei,et al. Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system , 2009, Appl. Math. Lett..