The two-dimensional elasticity of a chiral hinge lattice metamaterial

[1]  Manuel Collet,et al.  Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials , 2017 .

[2]  Damiano Pasini,et al.  Bistable Auxetic Mechanical Metamaterials Inspired by Ancient Geometric Motifs , 2016, 1612.05988.

[3]  Martin Wegener,et al.  Tailored Buckling Microlattices as Reusable Light‐Weight Shock Absorbers , 2016, Advanced materials.

[4]  Michael E. Plesha,et al.  Chiral three‐dimensional isotropic lattices with negative Poisson's ratio , 2016 .

[5]  Jinsong Leng,et al.  In-plane mechanics of a novel zero Poisson’s ratio honeycomb core , 2016 .

[6]  Abdel Magid Hamouda,et al.  Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach , 2016 .

[7]  R. Lakes,et al.  Experimental Cosserat elasticity in open-cell polymer foam , 2016 .

[8]  Ruben Gatt,et al.  Auxetic Perforated Mechanical Metamaterials with Randomly Oriented Cuts , 2016, Advanced materials.

[9]  Shu Yang,et al.  Design of Hierarchically Cut Hinges for Highly Stretchable and Reconfigurable Metamaterials with Enhanced Strength , 2015, Advanced materials.

[10]  Oliver Kraft,et al.  Vibrant times for mechanical metamaterials , 2015 .

[11]  Fabrizio Scarpa,et al.  Cellular plates with auxetic rectangular perforations , 2015 .

[12]  Joseph N. Grima,et al.  Auxetic metamaterials exhibiting giant negative Poisson's ratios , 2015 .

[13]  Jinkyu Yang,et al.  Reentrant Origami-Based Metamaterials with Negative Poisson's Ratio and Bistability. , 2015, Physical review letters.

[14]  Ruben Gatt,et al.  Hierarchical Auxetic Mechanical Metamaterials , 2015, Scientific Reports.

[15]  C. Sun,et al.  Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial , 2014, Nature Communications.

[16]  Ju Li,et al.  Engineering the shape and structure of materials by fractal cut , 2014, Proceedings of the National Academy of Sciences.

[17]  G. Hu,et al.  Micropolar continuum modelling of bi-dimensional tetrachiral lattices , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  G. Hu,et al.  Micropolar modeling of planar orthotropic rectangular chiral lattices , 2014 .

[19]  A. Bacigalupo,et al.  Homogenization of periodic hexa- and tetrachiral cellular solids , 2014, 1404.3786.

[20]  Katia Bertoldi,et al.  Low Porosity Metallic Periodic Structures with Negative Poisson's Ratio , 2014, Advanced materials.

[21]  Andrew Alderson,et al.  Auxetic Materials for Sports Applications , 2014 .

[22]  Katia Bertoldi,et al.  Buckling‐Induced Reversible Symmetry Breaking and Amplification of Chirality Using Supported Cellular Structures , 2013, Advanced materials.

[23]  Jinsong Leng,et al.  Elasticity of anti-tetrachiral anisotropic lattices , 2013 .

[24]  Fabrizio Scarpa,et al.  Hexachiral truss-core with twisted hemp yarns: Out-of-plane shear properties , 2012 .

[25]  E. Thomas,et al.  Micro‐/Nanostructured Mechanical Metamaterials , 2012, Advanced materials.

[26]  Guoliang Huang,et al.  Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices , 2012, 1203.4314.

[27]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[28]  J. Ganghoffer,et al.  Equivalent mechanical properties of auxetic lattices from discrete homogenization , 2012 .

[29]  Massimo Ruzzene,et al.  Elasto-static micropolar behavior of a chiral auxetic lattice , 2012 .

[30]  Gengkai Hu,et al.  Wave propagation characterization and design of two-dimensional elastic chiral metacomposite , 2011 .

[31]  Joseph N. Grima,et al.  A generalised three-dimensional tethered-nodule model for auxetic materials , 2011 .

[32]  Fabrizio Scarpa,et al.  Flatwise buckling optimization of hexachiral and tetrachiral honeycombs , 2010 .

[33]  F. Scarpa,et al.  The transverse elastic properties of chiral honeycombs , 2010 .

[34]  Andrew Alderson,et al.  The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs , 2010 .

[35]  Ruben Gatt,et al.  Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading , 2010 .

[36]  Ruben Gatt,et al.  Perforated Sheets Exhibiting Negative Poisson's Ratios , 2010 .

[37]  M. Ruzzene,et al.  Composite chiral structures for morphing airfoils: Numerical analyses and development of a manufacturing process , 2010 .

[38]  K. Bertoldi,et al.  Negative Poisson's Ratio Behavior Induced by an Elastic Instability , 2010, Advanced materials.

[39]  T. Weller,et al.  On the feasibility of introducing auxetic behavior into thin-walled structures , 2009 .

[40]  Massimo Ruzzene,et al.  Smart shape memory alloy chiral honeycomb , 2008 .

[41]  Ruben Gatt,et al.  On the properties of auxetic meta‐tetrachiral structures , 2008 .

[42]  Massimo Ruzzene,et al.  Elastic buckling of hexagonal chiral cell honeycombs , 2007 .

[43]  N. Fleck,et al.  Wave propagation in two-dimensional periodic lattices. , 2006, The Journal of the Acoustical Society of America.

[44]  Massimo Ruzzene,et al.  Global and local linear buckling behavior of a chiral cellular structure , 2005 .

[45]  R. Lakes,et al.  Properties of a chiral honeycomb with a poisson's ratio of — 1 , 1997 .

[46]  K. E. EVANS,et al.  Molecular network design , 1991, Nature.

[47]  K. Wojciechowski,et al.  Two-dimensional isotropic system with a negative poisson ratio , 1989 .

[48]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[49]  W. Nowacki Theory of Micropolar Elasticity , 1986 .

[50]  M. Ashby,et al.  The mechanics of three-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[51]  Roderic S. Lakes,et al.  Noncentrosymmetry in micropolar elasticity , 1982 .

[52]  G. Cowper The Shear Coefficient in Timoshenko’s Beam Theory , 1966 .

[53]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[54]  G. Peano Sur une courbe, qui remplit toute une aire plane , 1890 .