Finite Dimensional State Representation of Linear and Nonlinear Delay Systems

[1]  Odo Diekmann,et al.  Dangerous connections: on binding site models of infectious disease dynamics , 2016, Journal of Mathematical Biology.

[2]  A. Rhandi,et al.  Positive Linear Systems , 2017 .

[3]  Dimitri Breda,et al.  Pseudospectral Discretization of Nonlinear Delay Equations: New Prospects for Numerical Bifurcation Analysis , 2016, SIAM J. Appl. Dyn. Syst..

[4]  Matthias Abend,et al.  Volterra Integral And Functional Equations , 2016 .

[5]  Joel C. Miller,et al.  Incorporating Disease and Population Structure into Models of SIR Disease in Contact Networks , 2013, PloS one.

[6]  Lennart Persson,et al.  Population and Community Ecology of Ontogenetic Development , 2013 .

[7]  Gesine Reinert,et al.  Approximating the epidemic curve , 2013, 1301.3288.

[8]  Odo Diekmann,et al.  Equations with infinite delay: blending the abstract and the concrete , 2012 .

[9]  Joel C. Miller A note on a paper by Erik Volz: SIR dynamics in random networks , 2009, Journal of mathematical biology.

[10]  Odo Diekmann,et al.  UvA-DARE ( Digital Academic Repository ) Daphnia revisited : local stability and bifurcation theory for physiologically structured population models explained by way of an example , 2010 .

[11]  O Diekmann,et al.  The construction of next-generation matrices for compartmental epidemic models , 2010, Journal of The Royal Society Interface.

[12]  Mats Gyllenberg,et al.  Mathematical aspects of physiologically structured populations: the contributions of J. A. J. Metz , 2007, Journal of biological dynamics.

[13]  Odo Diekmann,et al.  Stability and Bifurcation Analysis of Volterra Functional Equations in the Light of Suns and Stars , 2007, SIAM J. Math. Anal..

[14]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[15]  M Gyllenberg,et al.  Steady-state analysis of structured population models. , 2003, Theoretical population biology.

[16]  Odo Diekmann,et al.  On the formulation and analysis of general deterministic structured population models I. Linear Theory , 1998, Journal of mathematical biology.

[17]  S. Rinaldi,et al.  Positive Linear Systems: Theory and Applications , 2000 .

[18]  O. Diekmann,et al.  On the formulation and analysis of general deterministic structured population models II. Nonlinear theory , 2000 .

[19]  S. Lunel,et al.  Delay Equations. Functional-, Complex-, and Nonlinear Analysis , 1995 .

[20]  Joan Saldaña,et al.  A model of physiologically structured population dynamics with a nonlinear individual growth rate , 1995 .

[21]  Odo Diekmann,et al.  Exploring linear chain trickery for physiologically structured populations , 1989 .

[22]  O. Diekmann,et al.  Exact finite dimensional representations of models for physiologically structured populations , 1989 .

[23]  Sلأren Asmussen,et al.  Applied Probability and Queues , 1989 .

[24]  A. De Roos,et al.  Numerical methods for structured population models: The Escalator Boxcar Train , 1988 .

[25]  Upendra Dave,et al.  Applied Probability and Queues , 1987 .

[26]  Mats Gyllenberg Stability of a Nonlinear Age-Dependent Population Model Containing a Control Variable , 1983 .

[27]  Mats Gyllenberg Nonlinear age-dependent population dynamics in continuously propagated bacterial cultures , 1982 .

[28]  N. Macdonald Time lags in biological models , 1978 .

[29]  Morton E. Gurtin,et al.  Non-linear age-dependent population dynamics , 1974 .

[30]  R. E. Kalman,et al.  Linear system theory-The state space approach , 1965 .

[31]  L. Shaw,et al.  System Theory. , 1965, Science.

[32]  T. Vogel Théorie des systèmes évolutifs , 1965 .

[33]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .