Distribution of α2-Adrenergic Receptors in the Living Human Brain Using [11C]yohimbine PET

The neurofunctional basis of the noradrenergic (NA) system and its associated disorders is still very incomplete because in vivo imaging tools in humans have been missing up to now. Here, for the first time, we use [11C]yohimbine in a large sample of subjects (46 healthy volunteers, 23 females, 23 males; aged 20–50) to perform direct quantification of regional alpha 2 adrenergic receptors’ (α2-ARs) availability in the living human brain. The global map shows the highest [11C]yohimbine binding in the hippocampus, the occipital lobe, the cingulate gyrus, and the frontal lobe. Moderate binding was found in the parietal lobe, thalamus, parahippocampus, insula, and temporal lobe. Low levels of binding were found in the basal ganglia, the amygdala, the cerebellum, and the raphe nucleus. Parcellation of the brain into anatomical subregions revealed important variations in [11C]yohimbine binding within most structures. Strong heterogeneity was found in the occipital lobe, the frontal lobe, and the basal ganglia, with substantial gender effects. Mapping the distribution of α2-ARs in the living human brain may prove useful not only for understanding the role of the NA system in many brain functions, but also for understanding neurodegenerative diseases in which altered NA transmission with specific loss of α2-ARs is suspected.

[1]  N. Costes,et al.  Modeling [11C]yohimbine PET human brain kinetics with test-retest reliability, competition sensitivity studies and search for a suitable reference region , 2021, NeuroImage.

[2]  C. Cavada,et al.  Distribution of the Noradrenaline Innervation and Adrenoceptors in the Macaque Monkey Thalamus , 2021, Cerebral cortex.

[3]  T. Robbins,et al.  The role of noradrenaline in cognition and cognitive disorders , 2021, Brain : a journal of neurology.

[4]  G. Miller,et al.  Restoration of Noradrenergic Function in Parkinson’s Disease Model Mice , 2021, ASN neuro.

[5]  Sarika Singh Noradrenergic pathways of locus coeruleus in Parkinson’s and Alzheimer’s pathology , 2020, The International journal of neuroscience.

[6]  F. Drago,et al.  Rescue of Noradrenergic System as a Novel Pharmacological Strategy in the Treatment of Chronic Pain: Focus on Microglia Activation , 2019, Front. Pharmacol..

[7]  Anthonin Reilhac,et al.  Development of a Dedicated Rebinner with Rigid Motion Correction for the mMR PET/MR Scanner, and Validation in a Large Cohort of 11C-PIB Scans , 2018, The Journal of Nuclear Medicine.

[8]  A. Harkin,et al.  Targeting the noradrenergic system for anti-inflammatory and neuroprotective effects: implications for Parkinson's disease. , 2018, Neural regeneration research.

[9]  D. Weinshenker Long Road to Ruin: Noradrenergic Dysfunction in Neurodegenerative Disease , 2018, Trends in Neurosciences.

[10]  N. Costes,et al.  Multi-atlas attenuation correction supports full quantification of static and dynamic brain PET data in PET-MR , 2017, Physics in medicine and biology.

[11]  A. Gjedde,et al.  Mapping α2 Adrenoceptors of the Human Brain with 11C-Yohimbine , 2015, Journal of Nuclear Medicine.

[12]  A. Björklund,et al.  Noradrenaline neuron degeneration contributes to motor impairments and development of L-DOPA-induced dyskinesia in a rat model of Parkinson's disease , 2014, Experimental Neurology.

[13]  N. Raz,et al.  Prefrontal cortex and executive functions in healthy adults: A meta-analysis of structural neuroimaging studies , 2014, Neuroscience & Biobehavioral Reviews.

[14]  D. Nutt,et al.  Noradrenaline – the forgotten amine? , 2013 .

[15]  E. Szabadi Functional neuroanatomy of the central noradrenergic system , 2013, Journal of psychopharmacology.

[16]  S. Sara,et al.  Orienting and Reorienting: The Locus Coeruleus Mediates Cognition through Arousal , 2012, Neuron.

[17]  A. Landau,et al.  Amphetamine challenge decreases yohimbine binding to α2 adrenoceptors in Landrace pig brain , 2012, Psychopharmacology.

[18]  Abdelhamid Benazzouz,et al.  Noradrenaline and Parkinson's Disease , 2011, Front. Syst. Neurosci..

[19]  Daniel Rueckert,et al.  Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation , 2010, NeuroImage.

[20]  J. Tiihonen,et al.  Autoradiographic characterization of α2C‐adrenoceptors in the human striatum , 2008, Synapse.

[21]  F. Fornai,et al.  Noradrenaline in Parkinson's disease: from disease progression to current therapeutics. , 2007, Current medicinal chemistry.

[22]  J. Roth,et al.  α2A‐Adrenoceptors Regulate Sympathetic Transmitter Release in Mice Kidneys , 2007, British journal of pharmacology.

[23]  Donald F. Smith,et al.  Detection of α2-Adrenergic Receptors in Brain of Living Pig with 11C-Yohimbine , 2006 .

[24]  Daniel Rueckert,et al.  Automatic anatomical brain MRI segmentation combining label propagation and decision fusion , 2006, NeuroImage.

[25]  D Yves von Cramon,et al.  Decision-making and the frontal lobes , 2006, Current opinion in neurology.

[26]  Jonathan D. Cohen,et al.  Adaptive gain and the role of the locus coeruleus–norepinephrine system in optimal performance , 2005, The Journal of comparative neurology.

[27]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[28]  A. Rosenquist,et al.  Noradrenergic mechanisms in neurodegenerative diseases: a theory , 2004, Brain Research Reviews.

[29]  E. Rolls The functions of the orbitofrontal cortex , 1999, Brain and Cognition.

[30]  Alexander Hammers,et al.  Three‐dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe , 2003, Human brain mapping.

[31]  C. Berridge,et al.  The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes , 2003, Brain Research Reviews.

[32]  H. Braak,et al.  Staging of brain pathology related to sporadic Parkinson’s disease , 2003, Neurobiology of Aging.

[33]  Joshua W. Brown,et al.  Monitoring and Control of Action by the Frontal Lobes , 2002, Neuron.

[34]  L. Hein,et al.  Two α2-adrenergic receptor subtypes, α2A and α2C, inhibit transmitter release in the brain of gene-targeted mice , 2002, Neuroscience.

[35]  Morris Freedman,et al.  Frontal lobe functions , 2001, Current neurology and neuroscience reports.

[36]  M. Weissman,et al.  Ethnic and sex differences in suicide rates relative to major depression in the United States. , 2001, The American journal of psychiatry.

[37]  K. Starke,et al.  α2‐Adrenoceptors modulating neuronal serotonin release: a study in α2‐adrenoceptor subtype‐deficient mice , 2001 .

[38]  B. Kobilka,et al.  Two functionally distinct α2-adrenergic receptors regulate sympathetic neurotransmission , 1999, Nature.

[39]  T. Reader,et al.  Regional brain distribution of noradrenaline uptake sites, and of α1-, α2- and β-adrenergic receptors in PCD mutant mice: a quantitative autoradiographic study , 1999, Neuroscience.

[40]  D. Bernstein,et al.  Abnormal regulation of the sympathetic nervous system in alpha2A-adrenergic receptor knockout mice. , 1999, Molecular pharmacology.

[41]  D. Bylund Pharmacological Characteristics of Alpha‐2 Adrenergic Receptor Subtypes , 1995, Annals of the New York Academy of Sciences.

[42]  Á. Pazos,et al.  Autoradiographic Demonstration of Increased α2‐Adrenoceptor Agonist Binding Sites in the Hippocampus and Frontal Cortex of Depressed Suicide Victims , 1994, Journal of neurochemistry.

[43]  A. M. Etgen,et al.  Estradiol reduction of the agonist high affinity form of the alpha 2-adrenoceptor in the hypothalamus of female rats: identification as the alpha 2D subtype. , 1994, Molecular pharmacology.

[44]  R. Kessler,et al.  Panic and panic disorder in the United States. , 1994, The American journal of psychiatry.

[45]  D. Heal,et al.  Quantification of presynaptic α2-adrenoceptors in rat brain after short-term DSP-4 lesioning , 1993 .

[46]  M. Sastre,et al.  Opposite Age‐Dependent Changes of α2A‐Adrenoceptors and Nonadrenoceptor [3H]Idazoxan Binding Sites (I2‐Imidazoline Sites) in the Human Brain: Strong Correlation of I2 with Monoamine Oxidase‐B Sites , 1993, Journal of neurochemistry.

[47]  A. M. Etgen,et al.  Estradiol attenuates alpha 2-adrenoceptor-mediated inhibition of hypothalamic norepinephrine release , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  G. Ordway,et al.  Characterization of subtypes of alpha-2 adrenoceptors in the human brain. , 1993, The Journal of pharmacology and experimental therapeutics.

[49]  C. Mathis,et al.  Quantitative in vitro and ex vivo autoradiography of the α2-adrenoceptor antagonist [3H]atopamezole , 1992 .

[50]  Á. Pazos,et al.  Quantitative light microscopic autoradiographic localization of α 2-adrenoceptors in the human brain , 1992, Brain Research.

[51]  J. Zarranz,et al.  Decreased Density of Presynaptic α2‐Adrenoceptors in Postmortem Brains of Patients with Alzheimer's Disease , 1992, Journal of neurochemistry.

[52]  G. Vauquelin,et al.  Regional Distribution of α2A‐and α2B‐Adrenoceptor Subtypes in Postmortem Human Brain , 1992 .

[53]  J. García-Sevilla,et al.  α 2-Adrenoceptors in the brain of suicide victims: increased receptor density associated with major depression , 1992, Biological Psychiatry.

[54]  Á. Díaz,et al.  Regionally specific age-dependent decline in α 2-adrenoceptors: An autoradiographic study in human brain , 1991, Neuroscience Letters.

[55]  G. Vauquelin,et al.  Autoradiographic distribution of α 2 adrenoceptors, NAIBS, and 5-HT1A receptors in human brain using [3H]idazoxan and [3H]rauwolscine , 1991, Brain Research.

[56]  J. Palacios,et al.  Autoradiography of adrenoceptors in rat and human brain: alpha-adrenoceptor and idazoxan binding sites. , 1991, Progress in brain research.

[57]  Á. Pazos,et al.  α2-Adrenoceptors in human forebrain: autoradiographic visualization and biochemical parameters using the agonist [3H]UK-14304 , 1988, Brain Research.

[58]  J. Palacios,et al.  Distribution of α2-adrenergic receptors in the human brainstem: An autoradiographic study using [3H]p-aminoclonidine , 1984 .

[59]  H. Herdon,et al.  Diethylstilbestrol regulates the number of α- and β-adrenergic binding sites in incubated hypothalamus and amygdala , 1982, Brain Research.

[60]  S. Z. Langer Presynaptic regulation of the release of catecholamines. , 1980, Pharmacological reviews.

[61]  S. Z. Langer Presynaptic receptors and modulation of neurotransmission: pharmacological implications and therapeutic relevance , 1980, Trends in Neurosciences.

[62]  H. Herdon,et al.  Radioligand binding studies on hypothalamic noradrenergic receptors during the estrous cycle or after steroid injection in ovariectomized rats , 1979, Brain Research.

[63]  E. Talley,et al.  Distribution of α2A‐adrenergic receptor‐like immunoreactivity in the rat central nervous system , 2022 .