Quantifying model structural uncertainty using airborne electromagnetic data

The ability to quantify structural uncertainty in geological models that incorporate geophysical data is affected by two primary sources of uncertainty: geophysical parameter uncertainty and uncertainty in the relationship between geophysical parameters and geological properties of interest. Here, we introduce an open-source, trans-dimensional Bayesian Markov chain Monte Carlo (McMC) algorithm GeoBIPy—Geophysical Bayesian Inference in Python—for robust uncertainty analysis of time-domain or frequency-domain airborne electromagnetic (AEM) data. The McMC algorithm provides a robust assessment of geophysical parameter uncertainty using a trans-dimensional approach that lets the AEM data inform the level of model complexity necessary by allowing the number of model layers itself to be an unknown parameter. Additional components of the Bayesian algorithm allow the user to solve for parameters such as data errors or corrections to the measured instrument height above ground. Probability distributions for a user-specified number of lithologic classes are developed through posterior clustering of McMC-derived resistivity models. Estimates of geological model structural uncertainty are thus obtained through the joint probability of geophysical parameter uncertainty and the uncertainty in the definition of each class. Examples of the implementation of this algorithm are presented for both time-domain and frequency-domain AEM data acquired in Nebraska, USA.

[1]  T. A. Davis,et al.  Probabilistic Categorical Groundwater Salinity Mapping From Airborne Electromagnetic Data Adjacent to California's Lost Hills and Belridge Oil Fields , 2020, Water Resources Research.

[2]  Jelena Markov,et al.  Cover thickness uncertainty mapping using Bayesian estimate fusion: leveraging domain knowledge , 2019, Geophysical Journal International.

[3]  R. Evans,et al.  Bayesian joint inversion of controlled source electromagnetic and magnetotelluric data to image freshwater aquifer offshore New Jersey , 2019, Geophysical Journal International.

[4]  Thomas Mejer Hansen,et al.  Inversion of airborne EM data with an explicit choice of prior model , 2019, Geophysical Journal International.

[5]  Adrian A. S. Barfod,et al.  Combining Clustering Methods With MPS to Estimate Structural Uncertainty for Hydrological Models , 2019, Front. Earth Sci..

[6]  Alan G. Jones,et al.  Subsurface Characterization of the Pennsylvanian Clare Basin, Western Ireland, by Means of Joint Interpretation of Electromagnetic Geophysical Data and Well‐Log Data , 2019, Journal of Geophysical Research: Solid Earth.

[7]  N. L. Foks,et al.  GeoBIPy - Geophysical Bayesian Inference in Python , 2018 .

[8]  R. Knight,et al.  Mapping Aquifer Systems with Airborne Electromagnetics in the Central Valley of California , 2018, Ground water.

[9]  Ingmar Nitze,et al.  21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes , 2018, Nature Communications.

[10]  Esben Auken,et al.  Trans-dimensional Bayesian inversion of airborne transient EM data from Taylor Glacier, Antarctica , 2018, Geophysical Journal International.

[11]  A. Dixit,et al.  Decision Making Under Uncertainty , 2018, Quantifying Uncertainty in Subsurface Systems.

[12]  Ognjen Grujic,et al.  Quantifying Uncertainty in Subsurface Systems , 2018, Quantifying Uncertainty in Subsurface Systems.

[13]  Eric Laloy,et al.  Training‐Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network , 2017, ArXiv.

[14]  E. Auken,et al.  Probabilistic predictions using a groundwater model informed with airborne EM data , 2017 .

[15]  B. Minsley,et al.  Automatic mapping of the base of aquifer — A case study from Morrill, Nebraska , 2017 .

[16]  Rhys Hawkins,et al.  Trans-dimensional Bayesian inversion of airborne electromagnetic data for 2D conductivity profiles , 2017 .

[17]  Steen Christensen,et al.  Generation of 3‐D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error , 2017 .

[18]  E. Auken,et al.  A comparison of helicopter‐borne electromagnetic systems for hydrogeologic studies , 2016 .

[19]  F. Jørgensen,et al.  3D geological modelling of a complex buried-valley network delineated from borehole and AEM data , 2015 .

[20]  A. Christiansen,et al.  Performance evaluation of groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs , 2015 .

[21]  Andrew Binley,et al.  An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data , 2015 .

[22]  H. Dugan,et al.  Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley , 2015, Nature Communications.

[23]  Peter Bauer-Gottwein,et al.  Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion , 2014 .

[24]  Bruce D. Smith,et al.  Multielevation calibration of frequency-domain electromagnetic data , 2014 .

[25]  T. Sonnenborg,et al.  Transition probability‐based stochastic geological modeling using airborne geophysical data and borehole data , 2014 .

[26]  Jens Christian Refsgaard,et al.  Challenges in conditioning a stochastic geological model of a heterogeneous glacial aquifer to a comprehensive soft data set , 2013 .

[27]  Anders Vest Christiansen,et al.  A method for cognitive 3D geological voxel modelling of AEM data , 2013, Bulletin of Engineering Geology and the Environment.

[28]  Andrew Collete,et al.  Python and HDF5: Unlocking Scientific Data , 2013 .

[29]  Andrew Binley,et al.  A Bayesian trans-dimensional approach for the fusion of multiple geophysical datasets , 2013 .

[30]  M. Sambridge,et al.  Transdimensional inference in the geosciences , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  Anandaroop Ray,et al.  Bayesian inversion of marine CSEM data with a trans‐dimensional self parametrizing algorithm , 2012 .

[32]  Esben Auken,et al.  Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise , 2012 .

[33]  James Martin,et al.  A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..

[34]  M. Sambridge,et al.  Transdimensional tomography with unknown data noise , 2012 .

[35]  Bruce D. Smith,et al.  Calibration and filtering strategies for frequency domain electromagnetic data , 2012 .

[36]  Malcolm Sambridge,et al.  Transdimensional inversion of receiver functions and surface wave dispersion , 2012 .

[37]  Jens Christian Refsgaard,et al.  Review of strategies for handling geological uncertainty in groundwater flow and transport modeling , 2012 .

[38]  Clifford I. Voss,et al.  Airborne electromagnetic imaging of discontinuous permafrost , 2012 .

[39]  B. Minsley A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency-domain electromagnetic data , 2011 .

[40]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[41]  N. Christensen,et al.  Fast approximate 1D inversion of frequency domain electromagnetic data , 2010 .

[42]  S. Silvestri,et al.  Surface water–groundwater exchange in transitional coastal environments by airborne electromagnetics: The Venice Lagoon example , 2010 .

[43]  A. Christiansen,et al.  A review of helicopter‐borne electromagnetic methods for groundwater exploration , 2009 .

[44]  Niels B. Christensen,et al.  Fast, laterally smooth inversion of airborne time-domain electromagnetic data , 2009 .

[45]  A. Christiansen,et al.  Quasi-3D modeling of airborne TEM data by spatially constrained inversion , 2008 .

[46]  K. Jensen,et al.  The importance of alternative conceptual models for simulation of concentrations in a multi-aquifer system , 2007 .

[47]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[48]  James M. Hyman,et al.  Being Sensitive to Uncertainty , 2007, Computing in Science & Engineering.

[49]  Malcolm Sambridge,et al.  A holistic approach to inversion of frequency-domain airborne EM data , 2006 .

[50]  A. Tarantola Popper, Bayes and the inverse problem , 2006 .

[51]  J. Vrbancich,et al.  Airborne electromagnetic footprints in 1D earths , 2006 .

[52]  M. Best,et al.  Airborne Electromagnetic Mapping for Buried Quaternary Sands and Gravels in Northeast British Columbia, Canada , 2006 .

[53]  J C Refsgaard,et al.  Model uncertainty--parameter uncertainty versus conceptual models. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[54]  Mario A. Storti,et al.  MPI for Python , 2005, J. Parallel Distributed Comput..

[55]  Esben Auken,et al.  Piecewise 1D laterally constrained inversion of resistivity data , 2005 .

[56]  J. Bredehoeft The conceptualization model problem—surprise , 2005 .

[57]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[58]  Douglas W. Oldenburg,et al.  Simultaneous 1D inversion of loop loop electromagnetic data for magnetic susceptibility and electrical conductivity , 2003 .

[59]  S. P. Neuman,et al.  Maximum likelihood Bayesian averaging of uncertain model predictions , 2003 .

[60]  D. Beamish Airborne EM footprints , 2003 .

[61]  A. Malinverno Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem , 2002 .

[62]  Miguel Bosch,et al.  Lithology discrimination from physical rock properties , 2002 .

[63]  D. Fitterman,et al.  Helicopter EM mapping of saltwater intrusion in Everglades National Park, Florida , 1998 .

[64]  Roel Snieder,et al.  To Bayes or not to Bayes , 1997 .

[65]  Brian R. Spies,et al.  Depth of investigation in electromagnetic sounding methods , 1989 .

[66]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[67]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[68]  Sam Kaplan,et al.  Low frequency full waveform seismic inversion within a tree based Bayesian framework , 2018 .

[69]  P. Bedrosian,et al.  Airborne electromagnetic mapping of the base of aquifer in areas of western Nebraska , 2012 .

[70]  Michael S. Zhdanov,et al.  Advanced Computational Methods of Rapid and Rigorous 3-D Inversion of Airborne Electromagnetic Data , 2008 .

[71]  J. Cannia,et al.  Cooperative Hydrology Study COHYSTHydrostratigraphic Units and AquiferCharacterization Report , 2006 .

[72]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[73]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[74]  D. Oldenburg,et al.  Simultaneous 1 D inversion of loop – loop electromagnetic data for magnetic susceptibility and electrical conductivity , 2003 .

[75]  J. Böhlke,et al.  Interaction of surface water and ground water in the Dutch Flats area, western Nebraska, 1995-99 , 2001 .