Yeast evolution and comparative genomics.

Recent sequencing efforts and experiments have advanced our understanding of genome evolution in yeasts, particularly the Saccharomyces yeasts. The ancestral genome of the Saccharomyces sensu stricto complex has been subject to both whole-genome duplication, followed by massive sequence loss and divergence, and segmental duplication. In addition the subtelomeric regions are subject to further duplications and rearrangements via ectopic exchanges. Translocations and other gross chromosomal rearrangements that break down syntenic relationships occur; however, they do not appear to be a driving force of speciation. Analysis of single genomes has been fruitful for hypothesis generation such as the whole-genome duplication, but comparative genomics between close and more distant species has proven to be a powerful tool in testing these hypotheses as well as elucidating evolutionary processes acting on the genome. Future work on population genomics and experimental evolution will keep yeast at the forefront of studies in genome evolution.

[1]  David M Young,et al.  Opportunities for genetic investigation afforded by Acinetobacter baylyi, a nutritionally versatile bacterial species that is highly competent for natural transformation. , 2005, Annual review of microbiology.

[2]  Yoshihiro Kawaoka,et al.  The origins of new pandemic viruses: the acquisition of new host ranges by canine parvovirus and influenza A viruses. , 2005, Annual review of microbiology.

[3]  E. Cascales,et al.  Biogenesis, architecture, and function of bacterial type IV secretion systems. , 2005, Annual review of microbiology.

[4]  A. Johnson,et al.  Mating in Candida albicans and the search for a sexual cycle. , 2005, Annual review of microbiology.

[5]  Ingrid Lafontaine,et al.  Comparative genomics in hemiascomycete yeasts: evolution of sex, silencing, and subtelomeres. , 2005, Molecular biology and evolution.

[6]  G. Liti,et al.  Inferences of evolutionary relationships from a population survey of LTR‐retrotransposons and telomeric‐associated sequences in the Saccharomyces sensu stricto complex , 2005, Yeast.

[7]  M. Smith,et al.  Molecular evolution of theSaccharomyces cerevisiae histone gene loci , 2005, Journal of Molecular Evolution.

[8]  Hideki Innan,et al.  Very Low Gene Duplication Rate in the Yeast Genome , 2004, Science.

[9]  Alan M. Moses,et al.  Conservation and Evolution of Cis-Regulatory Systems in Ascomycete Fungi , 2004, PLoS biology.

[10]  Mira Abraham,et al.  A universal telomerase RNA core structure includes structured motifs required for binding the telomerase reverse transcriptase protein. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Yves Van de Peer,et al.  Computational approaches to unveiling ancient genome duplications , 2004, Nature Reviews Genetics.

[12]  Antonis Rokas,et al.  Parallel inactivation of multiple GAL pathway genes and ecological diversification in yeasts. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[14]  V. Lundblad,et al.  Structural Elements Required for Association of the Saccharomyces cerevisiae Telomerase RNA with the Est2 Reverse Transcriptase , 2004, Molecular and Cellular Biology.

[15]  A. Lustig Telomerase RNA: A Flexible RNA Scaffold for Telomerase Biosynthesis , 2004, Current Biology.

[16]  Sherif Abou Elela,et al.  A Phylogenetically Based Secondary Structure for the Yeast Telomerase RNA , 2004, Current Biology.

[17]  T. Cech,et al.  Yeast telomerase RNA: a flexible scaffold for protein subunits. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  B. Dujon,et al.  Genome evolution in yeasts , 2004, Nature.

[19]  G. Fink,et al.  Defects Arising From Whole-Genome Duplications in Saccharomyces cerevisiae , 2004, Genetics.

[20]  J. Piškur,et al.  Yeast genome sequencing: the power of comparative genomics , 2004, Molecular microbiology.

[21]  J. Souciet,et al.  Recovery of a function involving gene duplication by retroposition in Saccharomyces cerevisiae. , 2004, Genome research.

[22]  B. Dujon,et al.  Gene relics in the genome of the yeast Saccharomyces cerevisiae. , 2004, Gene.

[23]  K. Wolfe Evolutionary Genomics: Yeasts Accelerate beyond BLAST , 2004, Current Biology.

[24]  George Newport,et al.  The diploid genome sequence of Candida albicans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  T. James,et al.  Aneuploidy and copy number breakpoints in the genome of lager yeasts mapped by microarray hybridisation , 2004, Current Genetics.

[26]  P. Philippsen,et al.  The Ashbya gossypii Genome as a Tool for Mapping the Ancient Saccharomyces cerevisiae Genome , 2004, Science.

[27]  B. Birren,et al.  Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae , 2004, Nature.

[28]  S. Oliver,et al.  Effects of reciprocal chromosomal translocations on the fitness of Saccharomyces cerevisiae , 2004, EMBO reports.

[29]  S. Wain-Hobson,et al.  Differential evolution of the Saccharomyces cerevisiae DUP240 paralogs and implication of recombination in phylogeny. , 2004, Nucleic acids research.

[30]  Justin C. Fay,et al.  Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae , 2004, Genome Biology.

[31]  J. Piškur,et al.  Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts , 2004, Molecular Genetics and Genomics.

[32]  G. Butler,et al.  Evolution of the MAT locus and its Ho endonuclease in yeast species. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  B. Dujon,et al.  Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments , 2004, The EMBO journal.

[34]  A. Burt,et al.  Population Genetics of the Wild Yeast Saccharomyces paradoxus , 2004, Genetics.

[35]  A. Martini,et al.  Three newly delimited species of Saccharomyces sensu stricto , 2004, Antonie van Leeuwenhoek.

[36]  C. Seoighe Turning the clock back on ancient genome duplication. , 2003, Current opinion in genetics & development.

[37]  Laureana Rebordinos,et al.  Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution of natural yeast. , 2003, Genetics.

[38]  W. Doolittle,et al.  Lateral gene transfer and the origins of prokaryotic groups. , 2003, Annual review of genetics.

[39]  S. Carroll,et al.  Genome-scale approaches to resolving incongruence in molecular phylogenies , 2003, Nature.

[40]  E. Eichler,et al.  Structural Dynamics of Eukaryotic Chromosome Evolution , 2003, Science.

[41]  L. Fulton,et al.  Finding Functional Features in Saccharomyces Genomes by Phylogenetic Footprinting , 2003, Science.

[42]  Sophie Brachat,et al.  Reinvestigation of the Saccharomyces cerevisiae genome annotation by comparison to the genome of a related fungus: Ashbya gossypii , 2003, Genome Biology.

[43]  C. Kurtzman,et al.  Phylogenetic relationships among yeasts of the 'Saccharomyces complex' determined from multigene sequence analyses. , 2003, FEMS yeast research.

[44]  S. Biggins,et al.  Captivating Capture: How Microtubules Attach to Kinetochores , 2003, Current Biology.

[45]  B. Birren,et al.  Sequencing and comparison of yeast species to identify genes and regulatory elements , 2003, Nature.

[46]  R H Borts,et al.  A role for the mismatch repair system during incipient speciation in Saccharomyces , 2003, Journal of evolutionary biology.

[47]  A. Hughes,et al.  Parallel evolution by gene duplication in the genomes of two unicellular fungi. , 2003, Genome research.

[48]  Brad A. Chapman,et al.  Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events , 2003, Nature.

[49]  S. Oliver,et al.  Engineering evolution to study speciation in yeasts , 2003, Nature.

[50]  Mark Johnston,et al.  Yeast genome duplication was followed by asynchronous differentiation of duplicated genes , 2003, Nature.

[51]  Q. Zeng,et al.  Systematic discovery of new genes in the Saccharomyces cerevisiae genome. , 2003, Genome research.

[52]  Daniel R. Richards,et al.  Genetic diversity in yeast assessed with whole-genome oligonucleotide arrays. , 2003, Genetics.

[53]  Simon Wong,et al.  Evidence from comparative genomics for a complete sexual cycle in the 'asexual' pathogenic yeast Candida glabrata , 2003, Genome Biology.

[54]  E. Louis,et al.  Hybrid Speciation in Experimental Populations of Yeast , 2002, Science.

[55]  David Botstein,et al.  Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Josef Loidl,et al.  Spatial organisation and behaviour of the parental chromosome sets in the nuclei of Saccharomyces cerevisiae × S. paradoxus hybrids , 2002, Journal of Cell Science.

[57]  Amparo Querol,et al.  Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. , 2002, Genome research.

[58]  J. Haber,et al.  Saccharomyces forkhead protein Fkh1 regulates donor preference during mating-type switching through the recombination enhancer. , 2002, Genes & development.

[59]  Alexander D. Johnson,et al.  White-Opaque Switching in Candida albicans Is Controlled by Mating-Type Locus Homeodomain Proteins and Allows Efficient Mating , 2002, Cell.

[60]  John R Yates,et al.  Parallel identification of new genes in Saccharomyces cerevisiae. , 2002, Genome research.

[61]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[62]  Simon Wong,et al.  Gene order evolution and paleopolyploidy in hemiascomycete yeasts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[63]  D. Greig,et al.  Epistasis and hybrid sterility in Saccharomyces , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[64]  Huanming Yang,et al.  A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica) , 2002, Science.

[65]  Daniel R. Richards,et al.  Dissecting the architecture of a quantitative trait locus in yeast , 2002, Nature.

[66]  B. Barrell,et al.  The genome sequence of Schizosaccharomyces pombe , 2002, Nature.

[67]  Heather C. Mefford,et al.  The complex structure and dynamic evolution of human subtelomeres , 2002, Nature Reviews Genetics.

[68]  P. Sniegowski,et al.  and coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics , 2002 .

[69]  P. Sniegowski,et al.  Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. , 2002, FEMS yeast research.

[70]  A. Oliphant,et al.  A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). , 2002, Science.

[71]  Kei-Hoi Cheung,et al.  An integrated approach for finding overlooked genes in yeast , 2002, Nature Biotechnology.

[72]  B. Dujon,et al.  Evolution of gene order in the genomes of two related yeast species. , 2001, Genome research.

[73]  T. Graves,et al.  Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. , 2001, Genome research.

[74]  C. Gaillardin,et al.  Analysis of the constitution of the beer yeast genome by PCR, sequencing and subtelomeric sequence hybridization. , 2001, International journal of systematic and evolutionary microbiology.

[75]  J. Piškur,et al.  Origin of the duplicated regions in the yeast genomes. , 2001, Trends in genetics : TIG.

[76]  B. Barrell,et al.  A Re-Annotation of the Saccharomyces Cerevisiae Genome , 2001, Comparative and functional genomics.

[77]  Nancy F. Hansen,et al.  Genomic evidence for a complete sexual cycle in Candida albicans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[78]  A. Hughes,et al.  Gene duplication and the structure of eukaryotic genomes. , 2001, Genome research.

[79]  B. Dujon,et al.  Genomic Exploration of the Hemiascomycetous Yeasts: 21. Comparative functional classification of genes , 2000, FEBS letters.

[80]  Pascal Durrens,et al.  Genomic Exploration of the Hemiascomycetous Yeasts: 20. Evolution of gene redundancy compared to Saccharomyces cerevisiae , 2000, FEBS letters.

[81]  B. Dujon,et al.  Genomic Exploration of the Hemiascomycetous Yeasts: 4. The genome of Saccharomyces cerevisiae revisited , 2000, FEBS letters.

[82]  B. Dujon,et al.  Genomic Exploration of the Hemiascomycetous Yeasts: 19. Ascomycetes‐specific genes , 2000, FEBS letters.

[83]  B. Dujon,et al.  Genomic Exploration of the Hemiascomycetous Yeasts: 18. Comparative analysis of chromosome maps and synteny with Saccharomyces cerevisiae , 2000, FEBS letters.

[84]  B. Barrell,et al.  Prevalence of small inversions in yeast gene order evolution. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[85]  J. Piškur,et al.  Yeast chromosomes have been significantly reshaped during their evolutionary history. , 2000, Journal of molecular biology.

[86]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[87]  D. Hartl,et al.  Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[88]  H. Kistler,et al.  Role of Horizontal Gene Transfer in the Evolution of Fungi. , 2000, Annual review of phytopathology.

[89]  G Achaz,et al.  Analysis of intrachromosomal duplications in yeast Saccharomyces cerevisiae: a possible model for their origin. , 2000, Molecular biology and evolution.

[90]  Hongyue Dai,et al.  Widespread aneuploidy revealed by DNA microarray expression profiling , 2000, Nature Genetics.

[91]  S. Oliver,et al.  Chromosomal evolution in Saccharomyces , 2000, Nature.

[92]  R. Mortimer Evolution and variation of the yeast (Saccharomyces) genome. , 2000, Genome research.

[93]  M. R. Adams,et al.  Comparative genomics of the eukaryotes. , 2000, Science.

[94]  J. Piškur,et al.  Horizontal Transfer of Genetic Material amongSaccharomyces Yeasts , 1999, Journal of bacteriology.

[95]  K. H. Wolfe,et al.  Updated map of duplicated regions in the yeast genome. , 1999, Gene.

[96]  J. Haber Mating-type gene switching in Saccharomyces cerevisiae. , 2015, Annual review of genetics.

[97]  Daniel R. Richards,et al.  Direct allelic variation scanning of the yeast genome. , 1998, Science.

[98]  C. Brown,et al.  Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. , 1998, Molecular biology and evolution.

[99]  Y. Kaneko,et al.  Co‐existence of two types of chromosome in the bottom fermenting yeast, Saccharomyces pastorianus , 1998, Yeast.

[100]  C. Newlon,et al.  Mcm1 regulates donor preference controlled by the recombination enhancer in Saccharomyces mating-type switching. , 1998, Genes & development.

[101]  K. H. Wolfe,et al.  Extent of genomic rearrangement after genome duplication in yeast. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Graeme M. Walker,et al.  Yeast Physiology and Biotechnology , 1998 .

[103]  K. H. Wolfe,et al.  Evolution of gene order and chromosome number in Saccharomyces, Kluyveromyces and related fungi , 1998, Yeast.

[104]  E. Louis,et al.  Chromosome ends: all the same under their caps. , 1997, Current opinion in genetics & development.

[105]  E. Louis,et al.  Saccharomyces cerevisiae telomeres. A review. , 1997, Biochemistry. Biokhimiia.

[106]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[107]  S. Oliver,et al.  Erratum: Overview of the yeast genome , 1997, Nature.

[108]  P. Sniegowski,et al.  Differentiation of European and Far East Asian populations of Saccharomyces paradoxus by allozyme analysis. , 1997, International journal of systematic bacteriology.

[109]  F. Allendorf,et al.  Secondary tetrasomic segregation of MDH-B and preferential pairing of homeologues in rainbow trout. , 1997, Genetics.

[110]  Wei Zhou,et al.  Characterization of the Yeast Transcriptome , 1997, Cell.

[111]  H. Mewes,et al.  Overview of the yeast genome. , 1997, Nature.

[112]  E. Louis,et al.  The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss , 1996, Molecular and cellular biology.

[113]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[114]  J. Haber,et al.  A 700 bp cis-Acting Region Controls Mating-Type Dependent Recombination Along the Entire Left Arm of Yeast Chromosome III , 1996, Cell.

[115]  B. Dujon The yeast genome project: what did we learn? , 1996, Trends in genetics : TIG.

[116]  R. Borts,et al.  The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. , 1996, The EMBO journal.

[117]  E. Louis,et al.  The chromosome ends of Saccharomyces cerevisiae , 1995, Yeast.

[118]  E. Louis,et al.  A complete set of marked telomeres in Saccharomyces cerevisiae for physical mapping and cloning. , 1995, Genetics.

[119]  G Muthukumar,et al.  Seripauperins of Saccharomyces cerevisiae: a new multigene family encoding serine-poor relatives of serine-rich proteins. , 1994, Gene.

[120]  E J Louis,et al.  The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics. , 1994, Genetics.

[121]  F. Sherman,et al.  The gene clusters ARC and COR on chromosomes 5 and 10, respectively, of Saccharomyces cerevisiae share a common ancestry. , 1993, Journal of molecular biology.

[122]  P. Slonimski,et al.  Two yeast chromosomes are related by a fossil duplication of their centromeric regions. , 1993, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[123]  E J Louis,et al.  The structure and evolution of subtelomeric Y' repeats in Saccharomyces cerevisiae. , 1992, Genetics.

[124]  M. Sogin,et al.  Evolutionary relationships among pathogenic Candida species and relatives , 1991, Journal of bacteriology.

[125]  A. Aguilera,et al.  High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. , 1990, Mutation research.

[126]  E J Louis,et al.  The subtelomeric Y' repeat family in Saccharomyces cerevisiae: an experimental system for repeated sequence evolution. , 1990, Genetics.

[127]  Y. Kaneko,et al.  A genetic analysis of taxonomic relation between Saccharomyces cerevisiae and Saccharomyces bayanus. , 1989, Yeast.

[128]  Teun Boekhout,et al.  The yeasts : a taxonomic study , 1972 .