Structure, Preparation, and Applications of 2D Material‐Based Metal–Semiconductor Heterostructures

Two‐dimensional (2D) materials’ family with its many members and different properties has recently drawn great attention. Thanks to their atomic thickness and smooth surface, 2D materials can be constructed into heterostructures or homostructures in the fashion of out‐of‐plane perpendicular stacking or in‐plane lateral stitching, resulting in unexpected physical and chemical properties and applications in many areas. In particular, 2D metal–semiconductor heterostructures or homostructures (MSHSs) which integrate 2D metals and 2D semiconductors, have shown great promise in future integrated electronics and energy‐related applications. Herein, MSHSs with different structures and dimensionalities are first introduced, followed by several ways for their preparation. Their applications in electronics and optoelectronics, energy storage and conversion, and their use as platforms to exploit new physics are then discussed. Finally, the perspectives about the challenges and future research directions in this emerging field are given.

[1]  Yuting Luo,et al.  High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution , 2020, Nature Communications.

[2]  Yadong Li,et al.  Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis , 2020 .

[3]  Bilu Liu,et al.  High yield growth and doping of black phosphorus with tunable electronic properties , 2020, 2007.09381.

[4]  Michael C. Cao,et al.  Tuning Electrical Conductance of MoS2 Monolayers through Substitutional Doping. , 2020, Nano letters.

[5]  Hua Yu,et al.  Precise control of the interlayer twist angle in large scale MoS2 homostructures , 2020, Nature Communications.

[6]  M. Terrones,et al.  Universal In Situ Substitutional Doping of Transition Metal Dichalcogenides by Liquid Phase Precursor-Assisted Synthesis. , 2020, ACS nano.

[7]  D. Peroulis,et al.  Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds , 2020, Nature Communications.

[8]  A. Bostwick,et al.  Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy , 2020, Nature Materials.

[9]  T. Taniguchi,et al.  3D manipulation of 2D materials using micro-dome polymer. , 2020, Nano letters.

[10]  Xiaoqing Pan,et al.  General synthesis of two-dimensional van der Waals heterostructure arrays , 2020, Nature.

[11]  T. Zhai,et al.  Sub‐Millimeter‐Scale Monolayer p‐Type H‐Phase VS2 , 2020, Advanced Functional Materials.

[12]  Y. Bando,et al.  Rational Design of Nanoporous MoS2 /VS2 Heteroarchitecture for Ultrahigh Performance Ammonia Sensors. , 2020, Small.

[13]  Q. Vu,et al.  Transfer assembly for two-dimensional van der Waals heterostructures , 2020, 2D Materials.

[14]  Chunxiang Xu,et al.  Synthesis of 2H‐1T′ WS2‐ReS2 Heterophase Structures with Atomically Sharp Interface via Hydrogen‐Triggered One‐Pot Growth , 2020, Advanced Functional Materials.

[15]  Yifan Sun,et al.  Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures , 2020, Nature Chemistry.

[16]  H. Shin,et al.  Spatially controlled lateral heterostructures of graphene and transition metal dichalcogenides toward atomically thin and multi-functional electronics. , 2020, Nanoscale.

[17]  Xiaodong Wang,et al.  Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions , 2020, Nature Communications.

[18]  J. Hone,et al.  Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices , 2020, Science.

[19]  Jin-an Shi,et al.  Strain-driven growth of ultra-long two-dimensional nano-channels , 2020, Nature Communications.

[20]  P. Ajayan,et al.  Conversion of non-van der Waals solids to 2D transition-metal chalcogenides , 2020, Nature.

[21]  Sapna Sinha,et al.  Direct Laser Patterning and Phase Transformation of 2D PdSe2 Films for On-Demand Device Fabrication. , 2019, ACS nano.

[22]  Mingwei Chen,et al.  Inlaid ReS2 Quantum Dots in Monolayer MoS2. , 2019, ACS nano.

[23]  K. Jiang,et al.  Bifunctional NbS2-Based Asymmetric Heterostructure for Lateral and Vertical Electronic Devices. , 2019, ACS nano.

[24]  B. Lee,et al.  Scalable 2D Lateral Metal/Semiconductor Junction Fabricated with Selective Synthetic Integration of Transition-Metal-Carbide (Mo2C)/-Dichalcogenide (MoS2). , 2019, ACS applied materials & interfaces.

[25]  T. Irisawa,et al.  Monolayer MoS2 growth at the Au-SiO2 interface. , 2019, Nanoscale.

[26]  Hui‐Ming Cheng,et al.  Mass production of 2D materials by intermediate-assisted grinding exfoliation , 2019, National science review.

[27]  T. Palacios,et al.  Realization of 2D crystalline metal nitrides via selective atomic substitution , 2019, Science Advances.

[28]  T. Zhai,et al.  Approaching ohmic contact to two-dimensional semiconductors. , 2019, Science bulletin.

[29]  P. Taberna,et al.  A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte , 2019, Nature Materials.

[30]  Chenghua Sun,et al.  Tuning the Hydrogen Evolution Performance of Metallic 2D Tantalum Disulfide by Interfacial Engineering. , 2019, ACS nano.

[31]  S. Du,et al.  Atomically precise, custom-design origami graphene nanostructures , 2019, Science.

[32]  D. Akinwande,et al.  Graphene and two-dimensional materials for silicon technology , 2019, Nature.

[33]  Yanting Huang,et al.  Van der Waals heterostructures for optoelectronics: Progress and prospects , 2019, Applied Materials Today.

[34]  S. Pennycook,et al.  Chemically Exfoliated VSe2 Monolayers with Room‐Temperature Ferromagnetism , 2019, Advanced materials.

[35]  Zhiqun Lin,et al.  Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. , 2019, Chemical Society reviews.

[36]  P. Ajayan,et al.  Two-dimensional Lateral Epitaxy of 2H (MoSe2) - 1T' (ReSe2) Phases. , 2019, Nano letters.

[37]  Zhe Tang,et al.  In Situ Hybridizing MoS2 Microflowers on VS2 Microflakes in a One-Pot CVD Process for Electrolytic Hydrogen Evolution Reaction , 2019, ACS Applied Energy Materials.

[38]  S. Koester,et al.  MoTe2 Lateral Homojunction Field-Effect Transistors Fabricated using Flux-Controlled Phase Engineering. , 2019, ACS nano.

[39]  Michael A. McGuire,et al.  Switching 2D magnetic states via pressure tuning of layer stacking , 2019, Nature Materials.

[40]  B. K. Gupta,et al.  Ultrafast Excitonic Behavior in Two-Dimensional Metal–Semiconductor Heterostructure , 2019, ACS Photonics.

[41]  S. Pantelides,et al.  Defect-Mediated Phase Transformation in Anisotropic Two-Dimensional PdSe2 Crystals for Seamless Electrical Contacts. , 2019, Journal of the American Chemical Society.

[42]  K. Novoselov,et al.  Magnetic 2D materials and heterostructures , 2019, Nature Nanotechnology.

[43]  D. Muller,et al.  Scaling-up atomically thin coplanar semiconductor-metal circuitry via phase engineered chemical assembly. , 2019, Nano letters.

[44]  Hao Li,et al.  Simultaneous synthesis and integration of two-dimensional electronic components , 2019, Nature Electronics.

[45]  C. A. Howard,et al.  Production of phosphorene nanoribbons , 2019, Nature.

[46]  L. Chu,et al.  Modulating Charge Density Wave Order in a 1T-TaS2/Black Phosphorus Heterostructure. , 2019, Nano letters.

[47]  Q. Lv,et al.  Two-dimensional heterostructures based on graphene and transition metal dichalcogenides: Synthesis, transfer and applications , 2019, Carbon.

[48]  H. Jeong,et al.  Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors , 2019, Nature.

[49]  Jiangwei Wang,et al.  Growth of environmentally stable transition metal selenide films , 2019, Nature Materials.

[50]  S. Pennycook,et al.  Location-selective growth of two-dimensional metallic/semiconducting transition metal dichalcogenide heterostructures. , 2019, Nanoscale.

[51]  Yu Huang,et al.  Van der Waals integration before and beyond two-dimensional materials , 2019, Nature.

[52]  Seung Jae Oh,et al.  Epitaxial van der Waals Contacts between Transition-Metal Dichalcogenide Monolayer Polymorphs. , 2019, Nano letters.

[53]  Zhiming M. Wang,et al.  Recent Progress in the Fabrication, Properties, and Devices of Heterostructures Based on 2D Materials , 2019, Nano-micro letters.

[54]  X. Duan,et al.  van der Waals Epitaxial Growth of Atomically Thin 2D Metals on Dangling‐Bond‐Free WSe2 and WS2 , 2019, Advanced Functional Materials.

[55]  S. Pennycook,et al.  Unraveling High‐Yield Phase‐Transition Dynamics in Transition Metal Dichalcogenides on Metallic Substrates , 2019, Advanced science.

[56]  L. Gu,et al.  Epitaxial Growth of Two-Dimensional Metal-Semiconductor Transition-Metal Dichalcogenide Vertical Stacks (VSe2/MX2) and Their Band Alignments. , 2019, ACS nano.

[57]  Yuting Luo,et al.  Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density , 2019, Nature Communications.

[58]  F. Kang,et al.  Simultaneous Production and Functionalization of Boron Nitride Nanosheets by Sugar‐Assisted Mechanochemical Exfoliation , 2019, Advanced materials.

[59]  L. Dai,et al.  Millimeter-Scale Single-Crystalline Semiconducting MoTe2 via Solid-to-Solid Phase Transformation. , 2019, Journal of the American Chemical Society.

[60]  Liang Zhao,et al.  Applications of 2D MXenes in energy conversion and storage systems. , 2019, Chemical Society reviews.

[61]  Sung‐Yool Choi,et al.  Improved Electrical Contact Properties of MoS2‐Graphene Lateral Heterostructure , 2018, Advanced Functional Materials.

[62]  Peng Wang,et al.  Ultrahigh‐Sensitive Broadband Photodetectors Based on Dielectric Shielded MoTe2/Graphene/SnS2 p–g–n Junctions , 2018, Advanced materials.

[63]  Yi Xie,et al.  Solution Processing for Lateral Transition-Metal Dichalcogenides Homojunction from Polymorphic Crystal. , 2018, Journal of the American Chemical Society.

[64]  M. Chou,et al.  Stable 1T Tungsten Disulfide Monolayer and Its Junctions: Growth and Atomic Structures. , 2018, ACS nano.

[65]  Yong Ju Park,et al.  Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials , 2018, Science.

[66]  L. Chu,et al.  Surface-Limited Superconducting Phase Transition on 1 T-TaS2. , 2018, ACS nano.

[67]  Qian Wang,et al.  Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers , 2018, Nature Materials.

[68]  Congwei Tan,et al.  Diverse Atomically Sharp Interfaces and Linear Dichroism of 1T' ReS2‐ReSe2 Lateral p–n Heterojunctions , 2018, Advanced Functional Materials.

[69]  X. Duan,et al.  Solution-processable 2D semiconductors for high-performance large-area electronics , 2018, Nature.

[70]  D. Muller,et al.  Synthetic Lateral Metal-Semiconductor Heterostructures of Transition Metal Disulfides. , 2018, Journal of the American Chemical Society.

[71]  Qinghua Zhang,et al.  Chemical Vapor Deposition Grown Wafer‐Scale 2D Tantalum Diselenide with Robust Charge‐Density‐Wave Order , 2018, Advanced materials.

[72]  P. Ajayan,et al.  Thermally Induced 2D Alloy‐Heterostructure Transformation in Quaternary Alloys , 2018, Advanced materials.

[73]  Bo Chen,et al.  Realization of vertical metal semiconductor heterostructures via solution phase epitaxy , 2018, Nature Communications.

[74]  John Bell,et al.  From nanometre to millimetre: a range of capabilities for plasma-enabled surface functionalization and nanostructuring , 2018 .

[75]  Zhenxing Wang,et al.  Edge‐Epitaxial Growth of 2D NbS2‐WS2 Lateral Metal‐Semiconductor Heterostructures , 2018, Advanced materials.

[76]  Yuting Luo,et al.  Preparation of 2D material dispersions and their applications. , 2018, Chemical Society reviews.

[77]  M. Seong,et al.  Phototransistors with Negative or Ambipolar Photoresponse Based on As‐Grown Heterostructures of Single‐Walled Carbon Nanotube and MoS2 , 2018, Advanced Functional Materials.

[78]  J. Kong,et al.  One-dimensional van der Waals heterostructures , 2018, Science.

[79]  M. Hersam,et al.  Intermixing and periodic self-assembly of borophene line defects , 2018, Nature Materials.

[80]  Hyun Seok Lee,et al.  Plasma-Induced Phase Transformation of SnS2 to SnS , 2018, Scientific Reports.

[81]  Dong Hoon Keum,et al.  van der Waals Metallic Transition Metal Dichalcogenides. , 2018, Chemical reviews.

[82]  Hua Zhang,et al.  Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications. , 2018, Chemical reviews.

[83]  Tianjiao Wang,et al.  Probing photoresponse of aligned single-walled carbon nanotube doped ultrathin MoS2 , 2018, Nanotechnology.

[84]  J. Ding,et al.  TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. , 2018, Chemical Society reviews.

[85]  Qingsheng Zeng,et al.  Morphology Engineering in Monolayer MoS2‐WS2 Lateral Heterostructures , 2018, Advanced Functional Materials.

[86]  Jing Lu,et al.  Gate-tunable interfacial properties of in-plane ML MX2 1T′–2H heterojunctions , 2018 .

[87]  Seung-Hwan Kim,et al.  Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS2 Transistors with Reduction of Metal-Induced Gap States. , 2018, ACS nano.

[88]  Xiaoqing Pan,et al.  Layer-Dependent Chemically Induced Phase Transition of Two-Dimensional MoS2. , 2018, Nano letters.

[89]  Saptarshi Das,et al.  Contact engineering for 2D materials and devices. , 2018, Chemical Society reviews.

[90]  Xiaoxi Zhu,et al.  Functional inks and printing of two-dimensional materials. , 2018, Chemical Society reviews.

[91]  Jiezhi Chen,et al.  Improving Performances of In-Plane Transition-Metal Dichalcogenide Schottky Barrier Field-Effect Transistors. , 2018, ACS applied materials & interfaces.

[92]  Hui‐Ming Cheng,et al.  Computational design and property predictions for two-dimensional nanostructures , 2018 .

[93]  Yu Huang,et al.  Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions , 2018, Nature.

[94]  Qingsheng Zeng,et al.  One-Step Synthesis of Metal/Semiconductor Heterostructure NbS2/MoS2 , 2018 .

[95]  S. Dou,et al.  Strategies for improving the lithium-storage performance of 2D nanomaterials , 2018 .

[96]  Hua Zhang,et al.  High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals , 2018, Nature Chemistry.

[97]  Chuanghan Hsu,et al.  A library of atomically thin metal chalcogenides , 2018, Nature.

[98]  L. Gu,et al.  Vertical 1T‐TaS2 Synthesis on Nanoporous Gold for High‐Performance Electrocatalytic Applications , 2018, Advanced materials.

[99]  Lain‐Jong Li,et al.  Self‐Aligned and Scalable Growth of Monolayer WSe2–MoS2 Lateral Heterojunctions , 2018 .

[100]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[101]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[102]  G. Zeng,et al.  Clay‐Inspired MXene‐Based Electrochemical Devices and Photo‐Electrocatalyst: State‐of‐the‐Art Progresses and Challenges , 2018, Advanced materials.

[103]  Xiaohui Qiu,et al.  A General Method for the Chemical Synthesis of Large‐Scale, Seamless Transition Metal Dichalcogenide Electronics , 2018, Advanced materials.

[104]  S. Pantelides,et al.  Dislocation-driven growth of two-dimensional lateral quantum-well superlattices , 2018, Science Advances.

[105]  Yi Cui,et al.  Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics , 2018, Nature Nanotechnology.

[106]  Y. Gogotsi,et al.  MoS2 -on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries. , 2018, Angewandte Chemie.

[107]  Quansheng Wu,et al.  Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2 , 2018, Nature Communications.

[108]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[109]  Mark A. Marsalis,et al.  Sub-nanometre channels embedded in two-dimensional materials. , 2018 .

[110]  Hui-Ming Cheng,et al.  Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. , 2018, Chemical reviews.

[111]  B. Lee,et al.  Epitaxial Synthesis of Molybdenum Carbide and Formation of a Mo2C/MoS2 Hybrid Structure via Chemical Conversion of Molybdenum Disulfide. , 2018, ACS nano.

[112]  C. Lien,et al.  Multilayer Graphene-WSe2 Heterostructures for WSe2 Transistors. , 2017, ACS nano.

[113]  Juan Du,et al.  Two-dimensional transition-metal dichalcogenides-based ferromagnetic van der Waals heterostructures. , 2017, Nanoscale.

[114]  Barry P Rand,et al.  Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors. , 2017, Nature materials.

[115]  David A. Muller,et al.  Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures , 2017, Nature.

[116]  Hyeong Rae Noh,et al.  Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. , 2017, Nature nanotechnology.

[117]  Jun Luo,et al.  Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices , 2017, Science.

[118]  L. Tan,et al.  Synthesis and Physical Properties of Phase-Engineered Transition Metal Dichalcogenide Monolayer Heterostructures. , 2017, ACS nano.

[119]  Kecheng Zhang,et al.  Carbon‐Nanotube‐Confined Vertical Heterostructures with Asymmetric Contacts , 2017, Advanced materials.

[120]  B. Xiang,et al.  2D hetero-structures based on transition metal dichalcogenides: fabrication, properties and applications. , 2017, Science bulletin.

[121]  Zhenhua Ni,et al.  Ultrafast Growth of High‐Quality Monolayer WSe2 on Au , 2017, Advanced materials.

[122]  P. Ajayan,et al.  Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution , 2017, Nature Energy.

[123]  Hua Yu,et al.  Argon Plasma Induced Phase Transition in Monolayer MoS2. , 2017, Journal of the American Chemical Society.

[124]  Y. Hao,et al.  NaCl-assisted one-step growth of MoS2–WS2 in-plane heterostructures , 2017, Nanotechnology.

[125]  L. Balicas,et al.  Sequential Edge-Epitaxy in 2D Lateral Heterostructures , 2017, 1706.07014.

[126]  Yury Gogotsi,et al.  Two-dimensional heterostructures for energy storage , 2017, Nature Energy.

[127]  Moon J. Kim,et al.  New Mo6Te6 Sub‐Nanometer‐Diameter Nanowire Phase from 2H‐MoTe2 , 2017, Advanced materials.

[128]  Jianbin Xu,et al.  Epitaxial Stitching and Stacking Growth of Atomically Thin Transition‐Metal Dichalcogenides (TMDCs) Heterojunctions , 2017 .

[129]  S. Russo,et al.  Fast and Highly Sensitive Ionic‐Polymer‐Gated WS2–Graphene Photodetectors , 2017, Advanced materials.

[130]  S. Koester,et al.  In‐Plane 2H‐1T′ MoTe2 Homojunctions Synthesized by Flux‐Controlled Phase Engineering , 2017, Advanced materials.

[131]  L. Gu,et al.  Metallic Vanadium Disulfide Nanosheets as a Platform Material for Multifunctional Electrode Applications. , 2017, Nano letters.

[132]  Qiyuan He,et al.  Recent Advances in Ultrathin Two-Dimensional Nanomaterials. , 2017, Chemical reviews.

[133]  Y. Iwasa,et al.  Highly crystalline 2D superconductors , 2017, 1703.03541.

[134]  M. Fuhrer,et al.  Direct Observation of 2D Electrostatics and Ohmic Contacts in Template-Grown Graphene/WS2 Heterostructures. , 2017, ACS nano.

[135]  K. Jiang,et al.  SWCNT‐MoS2‐SWCNT Vertical Point Heterostructures , 2017, Advanced materials.

[136]  Huafeng Yang,et al.  Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. , 2017, Nature nanotechnology.

[137]  Faisal Ahmed,et al.  Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. , 2017, ACS nano.

[138]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[139]  A. Majumdar,et al.  Nanocavity Integrated van der Waals Heterostructure Light-Emitting Tunneling Diode. , 2017, Nano letters.

[140]  W. Cao,et al.  In-Plane Mosaic Potential Growth of Large-Area 2D Layered Semiconductors MoS2-MoSe2 Lateral Heterostructures and Photodetector Application. , 2017, ACS applied materials & interfaces.

[141]  P. Schwaller,et al.  Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds , 2016, Nature Nanotechnology.

[142]  Peitao Liu,et al.  Enhanced Catalytic Activities of Metal-Phase-Assisted 1T@2H-MoSe2 Nanosheets for Hydrogen Evolution , 2016 .

[143]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[144]  Bingbing Tian,et al.  Phase Restructuring in Transition Metal Dichalcogenides for Highly Stable Energy Storage. , 2016, ACS nano.

[145]  P. Ajayan,et al.  Self-optimizing layered hydrogen evolution catalyst with high basal-plane activity , 2016, 1608.05755.

[146]  T. Chen,et al.  In Situ Thermal Synthesis of Inlaid Ultrathin MoS2/Graphene Nanosheets as Electrocatalysts for the Hydrogen Evolution Reaction , 2016 .

[147]  Mingwei Chen,et al.  Atomic‐Sized Pores Enhanced Electrocatalysis of TaS2 Nanosheets for Hydrogen Evolution , 2016, Advanced materials.

[148]  Tao Chen,et al.  Highly Stretchable Supercapacitors Based on Aligned Carbon Nanotube/Molybdenum Disulfide Composites. , 2016, Angewandte Chemie.

[149]  Y. Bando,et al.  Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms. , 2016, Chemical Society reviews.

[150]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[151]  Ming-Yang Li,et al.  Heterostructures based on two-dimensional layered materials and their potential applications , 2016 .

[152]  D. Muller,et al.  Atomically Thin Ohmic Edge Contacts Between Two-Dimensional Materials. , 2016, ACS nano.

[153]  Madan Dubey,et al.  Gold‐Mediated Exfoliation of Ultralarge Optoelectronically‐Perfect Monolayers , 2016, Advanced materials.

[154]  Bingbing Tian,et al.  Chemical Vapor Deposition of High‐Quality Large‐Sized MoS2 Crystals on Silicon Dioxide Substrates , 2016, Advanced science.

[155]  B. Pan,et al.  Design and Epitaxial Growth of MoSe2–NiSe Vertical Heteronanostructures with Electronic Modulation for Enhanced Hydrogen Evolution Reaction , 2016 .

[156]  Qiang Fu,et al.  Catalysis with two-dimensional materials and their heterostructures. , 2016, Nature nanotechnology.

[157]  Dong Jae Kim,et al.  Alloyed 2D Metal-Semiconductor Atomic Layer Junctions. , 2016, Nano letters.

[158]  Jiaqiang Yan,et al.  Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors. , 2016, Nano letters.

[159]  H. Zeng,et al.  Monolayer MoS2-Graphene Hybrid Aerogels with Controllable Porosity for Lithium-Ion Batteries with High Reversible Capacity. , 2016, ACS applied materials & interfaces.

[160]  R. Oulton,et al.  Exciton–Plasmon Coupling and Electromagnetically Induced Transparency in Monolayer Semiconductors Hybridized with Ag Nanoparticles , 2016, Advanced materials.

[161]  Pooi See Lee,et al.  Self-Assembly-Induced Alternately Stacked Single-Layer MoS2 and N-doped Graphene: A Novel van der Waals Heterostructure for Lithium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[162]  Su-Huai Wei,et al.  Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier , 2016, Science Advances.

[163]  Jinlong Yang,et al.  Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel , 2016, Nature.

[164]  A. Oganov,et al.  Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs , 2015, Science.

[165]  D. Muller,et al.  Large-scale chemical assembly of atomically thin transistors and circuits. , 2015, Nature nanotechnology.

[166]  M. Dresselhaus,et al.  Parallel Stitching of 2D Materials , 2015, Advanced materials.

[167]  Kaustav Banerjee,et al.  Electrical contacts to two-dimensional semiconductors. , 2015, Nature materials.

[168]  Jianbin Xu,et al.  Lateral Built‐In Potential of Monolayer MoS2–WS2 In‐Plane Heterostructures by a Shortcut Growth Strategy , 2015, Advanced materials.

[169]  N. Xu,et al.  All Chemical Vapor Deposition Synthesis and Intrinsic Bandgap Observation of MoS2/Graphene Heterostructures , 2015, Advanced materials.

[170]  Lianmao Peng,et al.  Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils , 2015, Nature Communications.

[171]  Sheng Liu,et al.  Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide , 2015, Nature Communications.

[172]  P. Ajayan,et al.  Facile Synthesis of Single Crystal Vanadium Disulfide Nanosheets by Chemical Vapor Deposition for Efficient Hydrogen Evolution Reaction , 2015, Advanced materials.

[173]  Hua Zhang,et al.  Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. , 2015, Journal of the American Chemical Society.

[174]  D. Englund,et al.  Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials. , 2015, ACS nano.

[175]  L. Chu,et al.  Halide-Assisted Atmospheric Pressure Growth of Large WSe2 and WS2 Monolayer Crystals , 2015, 1509.00555.

[176]  James M Tour,et al.  Graphene Quantum Dots Doping of MoS2 Monolayers , 2015, Advanced materials.

[177]  Suyeon Cho,et al.  Phase patterning for ohmic homojunction contact in MoTe2 , 2015, Science.

[178]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[179]  Byoung Hun Lee,et al.  Chemical Sensing of 2D Graphene/MoS2 Heterostructure device. , 2015, ACS applied materials & interfaces.

[180]  Jie Shan,et al.  Strongly enhanced charge-density-wave order in monolayer NbSe2. , 2015, Nature nanotechnology.

[181]  Zhongfan Liu,et al.  Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution , 2015, Nano Research.

[182]  M. Ge,et al.  Reversible Semiconducting-to-Metallic Phase Transition in Chemical Vapor Deposition Grown Monolayer WSe2 and Applications for Devices. , 2015, ACS nano.

[183]  E. Waclawik,et al.  Charge Mediated Semiconducting-to-Metallic Phase Transition in Molybdenum Disulfide Monolayer and Hydrogen Evolution Reaction in New 1T′ Phase , 2015 .

[184]  Suyeon Cho,et al.  Bandgap opening in few-layered monoclinic MoTe2 , 2015, Nature Physics.

[185]  J. Robinson,et al.  Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. , 2015, ACS nano.

[186]  X. Duan,et al.  Plasma-engineered MoS2 thin-film as an efficient electrocatalyst for hydrogen evolution reaction. , 2015, Chemical communications.

[187]  Moon J. Kim,et al.  Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures , 2015, Nature Communications.

[188]  R. Agarwal,et al.  Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations , 2015, Nature Communications.

[189]  Kuan-Hua Huang,et al.  Synthesis of lateral heterostructures of semiconducting atomic layers. , 2015, Nano letters.

[190]  Shuhong Yu,et al.  An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation , 2015, Nature Communications.

[191]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[192]  A. Fujiwara,et al.  Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2 , 2014, Scientific Reports.

[193]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[194]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[195]  Wang Yao,et al.  Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. , 2014, Nature materials.

[196]  Jonghwan Kim,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.

[197]  S. Cheong,et al.  Gate-tunable phase transitions in thin flakes of 1T-TaS2. , 2014, Nature nanotechnology.

[198]  Lain‐Jong Li,et al.  Graphene/MoS2 Heterostructures for Ultrasensitive Detection of DNA Hybridisation , 2014, Advanced materials.

[199]  C. Hu,et al.  Field-effect transistors built from all two-dimensional material components. , 2014, ACS nano.

[200]  Ying-Sheng Huang,et al.  Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. , 2014, Nature nanotechnology.

[201]  A. Sumant,et al.  All two-dimensional, flexible, transparent, and thinnest thin film transistor. , 2014, Nano letters.

[202]  R. Wallace,et al.  The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. , 2014, Nano letters.

[203]  Arnold Burger,et al.  Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. , 2014, Nature nanotechnology.

[204]  Jing Kong,et al.  Role of the seeding promoter in MoS2 growth by chemical vapor deposition. , 2014, Nano letters.

[205]  Yu-Lun Chueh,et al.  Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures , 2014, Scientific Reports.

[206]  Yadong Li,et al.  Ultrathin rhodium nanosheets , 2014, Nature Communications.

[207]  Zhi-Xun Shen,et al.  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[208]  Qiang Sun,et al.  Structures and Phase Transition of a MoS2 Monolayer , 2014 .

[209]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[210]  Zhongfang Chen,et al.  Metallic VS2 Monolayer: A Promising 2D Anode Material for Lithium Ion Batteries , 2013 .

[211]  Arindam Ghosh,et al.  Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. , 2013, Nature nanotechnology.

[212]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[213]  J. Coleman,et al.  Development of MoS2–CNT Composite Thin Film from Layered MoS2 for Lithium Batteries , 2013 .

[214]  Weiwei Zhao,et al.  Layer-by-layer thinning of MoS2 by plasma. , 2013, ACS nano.

[215]  Liying Jiao,et al.  Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. , 2013, Journal of the American Chemical Society.

[216]  Zhiyuan Zeng,et al.  Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets , 2013, Nature Communications.

[217]  Aydin Babakhani,et al.  In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. , 2013, Nature nanotechnology.

[218]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[219]  Pinshane Y. Huang,et al.  Graphene and boron nitride lateral heterostructures for atomically thin circuitry , 2012, Nature.

[220]  G. Steele,et al.  Laser-thinning of MoS₂: on demand generation of a single-layer semiconductor. , 2012, Nano letters.

[221]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[222]  Can Ataca,et al.  Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure , 2012 .

[223]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[224]  R. Tenne,et al.  New Route for Stabilization of 1T-WS2 and MoS2 Phases , 2011, 1110.3848.

[225]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[226]  Sefaattin Tongay,et al.  Graphene/GaN Schottky diodes: Stability at elevated temperatures , 2011 .

[227]  Kun Chang,et al.  L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries. , 2011, ACS nano.

[228]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[229]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[230]  Deep Jariwala,et al.  Atomic layers of hybridized boron nitride and graphene domains. , 2010, Nature materials.

[231]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[232]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[233]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[234]  R. T. Tung,et al.  Chemical bonding and fermi level pinning at metal-semiconductor interfaces. , 2000, Physical review letters.

[235]  Atsushi Koma,et al.  Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system , 1992 .

[236]  N. Mott The Theory of Crystal Rectifiers , 1939 .

[237]  Mark A. Marsalis,et al.  Sub-Nanometer Channels Embedded in Two-Dimensional Materials , 2017 .

[238]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[239]  N. Peres,et al.  1 Universal Dynamic Conductivity and Quantized Visible Opacity of Suspended Graphene , 2008 .

[240]  H. Hasegawa,et al.  On the electrical properties of compound semiconductor interfaces in metal/insulator/ semiconductor structures and the possible origin of interface states , 1983 .

[241]  R. R. Haering,et al.  Structural destabilization induced by lithium intercalation in MoS2 and related compounds , 1983 .