Adaptive energy minimisation for hp-finite element methods

This article is concerned with the numerical solution of convex variational problems. More precisely, we develop an iterative minimisation technique which allows for the successive enrichment of an underlying discrete approximation space in an adaptive manner. Specifically, we outline a new approach in the context of h p -adaptive finite element methods employed for the efficient numerical solution of linear and nonlinear second-order boundary value problems. Numerical experiments are presented which highlight the practical performance of this new h p -refinement technique for both one- and two-dimensional problems.

[1]  Catherine Mavriplis,et al.  Adaptive mesh strategies for the spectral element method , 1992 .

[2]  E. Süli,et al.  A note on the design of hp-adaptive finite element methods for elliptic partial differential equations , 2005 .

[3]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[4]  Stefano Giani,et al.  Anisotropic hp-adaptive discontinuous Galerkin finite element methods for compressible fluid flows. , 2001 .

[5]  Christine Bernardi,et al.  An error indicator for mortar element solutions to the Stokes problem , 2001 .

[6]  Leszek Demkowicz,et al.  Toward a universal adaptive finite element strategy part 3. design of meshes , 1989 .

[7]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[8]  Endre Süli,et al.  Adaptive Finite Element Approximation of Hyperbolic Problems , 2003 .

[9]  Willy Dörfler,et al.  Convergence of an adaptive hp finite element strategy in one space dimension , 2007 .

[10]  Barbara I. Wohlmuth,et al.  On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..

[11]  Ivo Babuška,et al.  Regularity of the solution of elliptic problems with piecewise analytic data. Part 1. Boundary value problems for linear elliptic equation of second order , 1988 .

[12]  Leszek Demkowicz,et al.  Integration of hp-adaptivity and a two-grid solver for elliptic problems , 2006 .

[13]  Mark Ainsworth,et al.  The approximation theory for the p-version finite element method and application to non-linear elliptic PDEs , 1999, Numerische Mathematik.

[14]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[15]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[16]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[17]  Mark Ainsworth,et al.  An adaptive refinement strategy for hp -finite element computations , 1998 .

[18]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[19]  Thomas P. Wihler,et al.  An hp-adaptive strategy based on continuous Sobolev embeddings , 2011, J. Comput. Appl. Math..

[20]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[21]  Paul Houston,et al.  Two-Grid hp-Version Discontinuous Galerkin Finite Element Methods for Second-Order Quasilinear Elliptic PDEs , 2012, Journal of Scientific Computing.

[22]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[23]  Robert G. Owens,et al.  An h—p spectral element method for Stokes flow , 2000 .

[24]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[25]  Paul Houston,et al.  Discontinuous Galerkin methods on hp-anisotropic meshes II: a posteriori error analysis and adaptivity , 2009 .

[26]  E. N. Dancer MINIMAX METHODS IN CRITICAL POINT THEORY WITH APPLICATIONS TO DIFFERENTIAL EQUATIONS (CBMS Regional Conference Series in Mathematics 65) , 1987 .

[27]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[28]  E. Süli,et al.  A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs , 2007 .

[29]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[30]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[31]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[32]  Marjorie A. McClain,et al.  A Comparison of hp-Adaptive Strategies for Elliptic Partial Differential Equations , 2014, ACM Trans. Math. Softw..

[33]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[34]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[35]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[36]  Leszek F. Demkowicz,et al.  A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..

[37]  J. Melenk,et al.  An adaptive strategy for hp-FEM based on testing for analyticity , 2007 .

[38]  E. Zeidler Nonlinear Functional Analysis and its Applications: III: Variational Methods and Optimization , 1984 .

[39]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[40]  Manil Suri,et al.  The treatment of nonhomogeneous Dirichlet boundary conditions by thep-version of the finite element method , 1989 .

[41]  A. K. Norr,et al.  Adaptive, Multilevel, and Hierarchical Computational Strategies , 1992 .