A multi-resolution, non-parametric, Bayesian framework for identification of spatially-varying model parameters

This paper proposes a hierarchical, multi-resolution framework for the identification of model parameters and their spatially variability from noisy measurements of the response or output. Such parameters are frequently encountered in PDE-based models and correspond to quantities such as density or pressure fields, elasto-plastic moduli and internal variables in solid mechanics, conductivity fields in heat diffusion problems, permeability fields in fluid flow through porous media etc. The proposed model has all the advantages of traditional Bayesian formulations such as the ability to produce measures of confidence for the inferences made and providing not only predictive estimates but also quantitative measures of the predictive uncertainty. In contrast to existing approaches it utilizes a parsimonious, non-parametric formulation that favors sparse representations and whose complexity can be determined from the data. The proposed framework in non-intrusive and makes use of a sequence of forward solvers operating at various resolutions. As a result, inexpensive, coarse solvers are used to identify the most salient features of the unknown field(s) which are subsequently enriched by invoking solvers operating at finer resolutions. This leads to significant computational savings particularly in problems involving computationally demanding forward models but also improvements in accuracy. It is based on a novel, adaptive scheme based on Sequential Monte Carlo sampling which is embarrassingly parallelizable and circumvents issues with slow mixing encountered in Markov Chain Monte Carlo schemes. The capabilities of the proposed methodology are illustrated in problems from nonlinear solid mechanics with special attention to cases where the data is contaminated with random noise and the scale of variability of the unknown field is smaller than the scale of the grid where observations are collected.

[1]  Mike West,et al.  Markov Random Field Models for High-Dimensional Parameters in Simulations of Fluid Flow in Porous Media , 2002, Technometrics.

[2]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[3]  Christopher H. Holloman,et al.  Multi-resolution Genetic Algorithms and Markov Chain Monte Carlo , 2002 .

[4]  Phaedon-Stelios Koutsourelakis,et al.  Stochastic upscaling in solid mechanics: An excercise in machine learning , 2007, J. Comput. Phys..

[5]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[6]  Akhil Datta-Gupta,et al.  Multiscale Data Integration Using Markov Random Fields , 2000 .

[7]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[8]  D. S. Sivia,et al.  Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.

[9]  Nicholas Zabaras,et al.  A Bayesian inference approach to the inverse heat conduction problem , 2004 .

[10]  Herbert K. H. Lee,et al.  Multiresolution Genetic Algorithms and Markov chain Monte Carlo , 2006 .

[11]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[12]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[13]  A. Doucet,et al.  Efficient Block Sampling Strategies for Sequential Monte Carlo Methods , 2006 .

[14]  Simon J. Godsill,et al.  Sequential Bayesian Kernel Regression , 2003, NIPS.

[15]  I. Weir Fully Bayesian Reconstructions from Single-Photon Emission Computed Tomography Data , 1997 .

[16]  Brian Williams,et al.  A Bayesian calibration approach to the thermal problem , 2008 .

[18]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[19]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[20]  Nicholas Zabaras,et al.  A markov random field model of contamination source identification in porous media flow , 2006 .

[21]  Jun S. Liu,et al.  Sequential importance sampling for nonparametric Bayes models: The next generation , 1999 .

[22]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[23]  Henning Omre,et al.  Uncertainty in Production Forecasts based on Well Observations, Seismic Data and Production History , 2001 .

[24]  Jun S. Liu,et al.  Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation , 2000 .

[25]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[26]  Gardar Johannesson,et al.  Multi-Resolution Markov-Chain-Monte-Carlo Approach for System Identification with an Application to Finite-Element Models , 2005 .

[27]  G. Wahba,et al.  A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .

[28]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[29]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[30]  Michael Goldstein,et al.  Bayesian Forecasting for Complex Systems Using Computer Simulators , 2001 .

[31]  Hakobyan Yeranuhi,et al.  Random Heterogeneous Materials , 2008 .

[32]  James O. Berger,et al.  A Bayesian analysis of the thermal challenge problem , 2008 .

[33]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[34]  Temple F. Smith Occam's razor , 1980, Nature.

[35]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[36]  Martin B. Hansen,et al.  Bayesian inversion of geoelectrical resistivity data , 2003 .

[37]  Zoubin Ghahramani,et al.  A note on the evidence and Bayesian Occam's razor , 2005 .

[38]  Herbert K. H. Lee,et al.  Multiscale Modeling: A Bayesian Perspective , 2007 .

[39]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[40]  Ronald P. Barry,et al.  Blackbox Kriging: Spatial Prediction Without Specifying Variogram Models , 1996 .

[41]  Constantinos Theodoropoulos,et al.  Equation-Free Multiscale Computation: enabling microscopic simulators to perform system-level tasks , 2002 .

[42]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[43]  Giancarlo Sangalli,et al.  Capturing Small Scales in Elliptic Problems Using a Residual-Free Bubbles Finite Element Method , 2003, Multiscale Model. Simul..

[44]  Seung Choi,et al.  ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? J ? ? J ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2022 .

[45]  D. Calvetti,et al.  Tikhonov Regularization of Large Linear Problems , 2003 .

[46]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[47]  C. W. Groetsch,et al.  Inverse Problems in the Mathematical Sciences , 1993 .

[48]  Doron Levy,et al.  On Wavelet-Based Numerical Homogenization , 2005, Multiscale Model. Simul..

[49]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[50]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[51]  S. Mukherjee,et al.  Nonparametric Bayesian Kernel Models , 2007 .

[52]  James O. Berger,et al.  Ockham's Razor and Bayesian Analysis , 1992 .

[53]  Yalchin Efendiev,et al.  Coarse-gradient Langevin algorithms for dynamic data integration and uncertainty quantification , 2006, J. Comput. Phys..

[54]  Dave Higdon,et al.  A Bayesian approach to characterizing uncertainty in inverse problems using coarse and fine-scale information , 2002, IEEE Trans. Signal Process..

[55]  N. Chopin Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference , 2004, math/0508594.

[56]  Aleksey V. Nenarokomov,et al.  Uncertainties in parameter estimation: the inverse problem , 1995 .

[57]  Gardar Johannesson,et al.  Stochastic Engine Final Report: Applying Markov Chain Monte Carlo Methods with Importance Sampling to Large-Scale Data-Driven Simulation , 2004 .

[58]  Olof Runborg,et al.  Multi-scale methods for wave propagation in heterogeneous media , 2009, 0911.2638.

[59]  J. Greenleaf,et al.  Ultrasound-stimulated vibro-acoustic spectrography. , 1998, Science.

[60]  James O. Berger,et al.  Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems , 2003 .

[61]  Aleksey V. Nenarokomov,et al.  Uncertainties in parameter estimation: the optimal experiment design , 2000 .

[62]  D. M. Schmidt,et al.  Bayesian inference applied to the electromagnetic inverse problem , 1998, Human brain mapping.

[63]  P. Kitanidis,et al.  An Application of Bayesian Inverse Methods to Vertical Deconvolution of Hydraulic Conductivity in a Heterogeneous Aquifer at Oak Ridge National Laboratory , 2004 .

[64]  D. Higdon Space and Space-Time Modeling using Process Convolutions , 2002 .

[65]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[66]  Nicholas Zabaras,et al.  A stochastic variational multiscale method for diffusion in heterogeneous random media , 2006, J. Comput. Phys..

[67]  Nicholas Zabaras,et al.  Hierarchical Bayesian models for inverse problems in heat conduction , 2005 .

[68]  P. Kitanidis Parameter Uncertainty in Estimation of Spatial Functions: Bayesian Analysis , 1986 .

[69]  James F. Greenleaf,et al.  Inverse estimation of viscoelastic material properties for solids immersed in fluids using vibroacoustic techniques , 2007 .

[70]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[71]  David R. Bickel Comment on "Sequential Monte Carlo for Bayesian Computation" (P. Del Moral, A. Doucet, A. Jasra) , 2006 .