A multi-resolution, non-parametric, Bayesian framework for identification of spatially-varying model parameters
暂无分享,去创建一个
[1] Mike West,et al. Markov Random Field Models for High-Dimensional Parameters in Simulations of Fluid Flow in Porous Media , 2002, Technometrics.
[2] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[3] Christopher H. Holloman,et al. Multi-resolution Genetic Algorithms and Markov Chain Monte Carlo , 2002 .
[4] Phaedon-Stelios Koutsourelakis,et al. Stochastic upscaling in solid mechanics: An excercise in machine learning , 2007, J. Comput. Phys..
[5] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .
[6] Akhil Datta-Gupta,et al. Multiscale Data Integration Using Markov Random Fields , 2000 .
[7] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[8] D. S. Sivia,et al. Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.
[9] Nicholas Zabaras,et al. A Bayesian inference approach to the inverse heat conduction problem , 2004 .
[10] Herbert K. H. Lee,et al. Multiresolution Genetic Algorithms and Markov chain Monte Carlo , 2006 .
[11] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[12] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[13] A. Doucet,et al. Efficient Block Sampling Strategies for Sequential Monte Carlo Methods , 2006 .
[14] Simon J. Godsill,et al. Sequential Bayesian Kernel Regression , 2003, NIPS.
[15] I. Weir. Fully Bayesian Reconstructions from Single-Photon Emission Computed Tomography Data , 1997 .
[16] Brian Williams,et al. A Bayesian calibration approach to the thermal problem , 2008 .
[18] C. W. Gear,et al. Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .
[19] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[20] Nicholas Zabaras,et al. A markov random field model of contamination source identification in porous media flow , 2006 .
[21] Jun S. Liu,et al. Sequential importance sampling for nonparametric Bayes models: The next generation , 1999 .
[22] George Eastman House,et al. Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .
[23] Henning Omre,et al. Uncertainty in Production Forecasts based on Well Observations, Seismic Data and Production History , 2001 .
[24] Jun S. Liu,et al. Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation , 2000 .
[25] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[26] Gardar Johannesson,et al. Multi-Resolution Markov-Chain-Monte-Carlo Approach for System Identification with an Application to Finite-Element Models , 2005 .
[27] G. Wahba,et al. A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .
[28] Terrence J. Sejnowski,et al. Learning Overcomplete Representations , 2000, Neural Computation.
[29] A. O'Hagan,et al. Bayesian calibration of computer models , 2001 .
[30] Michael Goldstein,et al. Bayesian Forecasting for Complex Systems Using Computer Simulators , 2001 .
[31] Hakobyan Yeranuhi,et al. Random Heterogeneous Materials , 2008 .
[32] James O. Berger,et al. A Bayesian analysis of the thermal challenge problem , 2008 .
[33] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[34] Temple F. Smith. Occam's razor , 1980, Nature.
[35] Neil J. Gordon,et al. Editors: Sequential Monte Carlo Methods in Practice , 2001 .
[36] Martin B. Hansen,et al. Bayesian inversion of geoelectrical resistivity data , 2003 .
[37] Zoubin Ghahramani,et al. A note on the evidence and Bayesian Occam's razor , 2005 .
[38] Herbert K. H. Lee,et al. Multiscale Modeling: A Bayesian Perspective , 2007 .
[39] John K Kruschke,et al. Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.
[40] Ronald P. Barry,et al. Blackbox Kriging: Spatial Prediction Without Specifying Variogram Models , 1996 .
[41] Constantinos Theodoropoulos,et al. Equation-Free Multiscale Computation: enabling microscopic simulators to perform system-level tasks , 2002 .
[42] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[43] Giancarlo Sangalli,et al. Capturing Small Scales in Elliptic Problems Using a Residual-Free Bubbles Finite Element Method , 2003, Multiscale Model. Simul..
[44] Seung Choi,et al. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? J ? ? J ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2022 .
[45] D. Calvetti,et al. Tikhonov Regularization of Large Linear Problems , 2003 .
[46] J. Q. Smith,et al. 1. Bayesian Statistics 4 , 1993 .
[47] C. W. Groetsch,et al. Inverse Problems in the Mathematical Sciences , 1993 .
[48] Doron Levy,et al. On Wavelet-Based Numerical Homogenization , 2005, Multiscale Model. Simul..
[49] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[50] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[51] S. Mukherjee,et al. Nonparametric Bayesian Kernel Models , 2007 .
[52] James O. Berger,et al. Ockham's Razor and Bayesian Analysis , 1992 .
[53] Yalchin Efendiev,et al. Coarse-gradient Langevin algorithms for dynamic data integration and uncertainty quantification , 2006, J. Comput. Phys..
[54] Dave Higdon,et al. A Bayesian approach to characterizing uncertainty in inverse problems using coarse and fine-scale information , 2002, IEEE Trans. Signal Process..
[55] N. Chopin. Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference , 2004, math/0508594.
[56] Aleksey V. Nenarokomov,et al. Uncertainties in parameter estimation: the inverse problem , 1995 .
[57] Gardar Johannesson,et al. Stochastic Engine Final Report: Applying Markov Chain Monte Carlo Methods with Importance Sampling to Large-Scale Data-Driven Simulation , 2004 .
[58] Olof Runborg,et al. Multi-scale methods for wave propagation in heterogeneous media , 2009, 0911.2638.
[59] J. Greenleaf,et al. Ultrasound-stimulated vibro-acoustic spectrography. , 1998, Science.
[60] James O. Berger,et al. Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems , 2003 .
[61] Aleksey V. Nenarokomov,et al. Uncertainties in parameter estimation: the optimal experiment design , 2000 .
[62] D. M. Schmidt,et al. Bayesian inference applied to the electromagnetic inverse problem , 1998, Human brain mapping.
[63] P. Kitanidis,et al. An Application of Bayesian Inverse Methods to Vertical Deconvolution of Hydraulic Conductivity in a Heterogeneous Aquifer at Oak Ridge National Laboratory , 2004 .
[64] D. Higdon. Space and Space-Time Modeling using Process Convolutions , 2002 .
[65] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[66] Nicholas Zabaras,et al. A stochastic variational multiscale method for diffusion in heterogeneous random media , 2006, J. Comput. Phys..
[67] Nicholas Zabaras,et al. Hierarchical Bayesian models for inverse problems in heat conduction , 2005 .
[68] P. Kitanidis. Parameter Uncertainty in Estimation of Spatial Functions: Bayesian Analysis , 1986 .
[69] James F. Greenleaf,et al. Inverse estimation of viscoelastic material properties for solids immersed in fluids using vibroacoustic techniques , 2007 .
[70] Christian P. Robert,et al. Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .
[71] David R. Bickel. Comment on "Sequential Monte Carlo for Bayesian Computation" (P. Del Moral, A. Doucet, A. Jasra) , 2006 .