Single-Image Blind Deblurring for Non-uniform Camera-Shake Blur

In this paper we address the problem of estimating latent sharp image and unknown blur kernel from a single motion-blurred image. The blur results from camera shake and is spatially variant. Meanwhile, the blur kernel of motion has three degrees of freedom, i.e., translations and in-plane rotation. In order to solve this problem, we first analyzed the homography blur model for the non-uniform camera-shake blur. We simplified the model to 3-dimensional camera motion which can be accelerated by exploiting the fast Fourier transform to process subsequent image deconvolution. We then proposed an effective method to handle the blind image-deblurring problem by the image decomposition, which does not need to segment the image into local subregions under the assumption of spatially invariant blur. Experimental results on both synthetic and real blurred images show that the presented approach can successfully remove various kinds of blur.

[1]  Wei Xiong,et al.  Rotational Motion Deblurring of a Rigid Object from a Single Image , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[2]  Michael S. Brown,et al.  Richardson-Lucy Deblurring for Scenes under a Projective Motion Path , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Jiaya Jia,et al.  Reducing boundary artifacts in image deconvolution , 2008, 2008 15th IEEE International Conference on Image Processing.

[4]  Stephen Lin,et al.  Image/video deblurring using a hybrid camera , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Shree K. Nayar,et al.  Motion-based motion deblurring , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  William T. Freeman,et al.  Removing camera shake from a single photograph , 2006, SIGGRAPH 2006.

[7]  Sunghyun Cho,et al.  Fast motion deblurring , 2009, SIGGRAPH 2009.

[8]  Suvrit Sra,et al.  Online blind deconvolution for astronomical imaging , 2009, 2009 IEEE International Conference on Computational Photography (ICCP).

[9]  Rob Fergus,et al.  Fast Image Deconvolution using Hyper-Laplacian Priors , 2009, NIPS.

[10]  S. B. Kang,et al.  Image deblurring using inertial measurement sensors , 2010, SIGGRAPH 2010.

[11]  Anat Levin,et al.  Blind Motion Deblurring Using Image Statistics , 2006, NIPS.

[12]  Wen-Liang Hwang,et al.  Multiple component predictive coding framework of still images , 2011, 2011 IEEE International Conference on Multimedia and Expo.

[13]  Lifeng Sun,et al.  Analyzing Image Deblurring Through Three Paradigms , 2012, IEEE Transactions on Image Processing.

[14]  Jiaya Jia,et al.  High-quality motion deblurring from a single image , 2008, SIGGRAPH 2008.

[15]  Bernhard Schölkopf,et al.  Fast removal of non-uniform camera shake , 2011, 2011 International Conference on Computer Vision.

[16]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[17]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[18]  Frédo Durand,et al.  Understanding and evaluating blind deconvolution algorithms , 2009, CVPR.

[19]  Richard Szeliski,et al.  PSF estimation using sharp edge prediction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Hans-Peter Seidel,et al.  Video quality assessment for computer graphics applications , 2010, SIGGRAPH 2010.

[21]  Li Xu,et al.  Two-Phase Kernel Estimation for Robust Motion Deblurring , 2010, ECCV.

[22]  Bernhard Schölkopf,et al.  Efficient filter flow for space-variant multiframe blind deconvolution , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Filip Sroubek,et al.  Space-variant deblurring using one blurred and one underexposed image , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[24]  Thomas Deselaers,et al.  ClassCut for Unsupervised Class Segmentation , 2010, ECCV.

[25]  Jean Ponce,et al.  Non-uniform Deblurring for Shaken Images , 2010, International Journal of Computer Vision.

[26]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[27]  Stephen Lin,et al.  Correction of Spatially Varying Image and Video Motion Blur Using a Hybrid Camera , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[29]  Jian Sun,et al.  Progressive inter-scale and intra-scale non-blind image deconvolution , 2008, SIGGRAPH 2008.

[30]  Bernhard Schölkopf,et al.  Space-Variant Single-Image Blind Deconvolution for Removing Camera Shake , 2010, NIPS.

[31]  Sylvain Paris,et al.  Blur kernel estimation using the radon transform , 2011, CVPR 2011.

[32]  Frédo Durand,et al.  Efficient marginal likelihood optimization in blind deconvolution , 2011, CVPR 2011.

[33]  Ankit Gupta,et al.  Single Image Deblurring Using Motion Density Functions , 2010, ECCV.

[34]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[35]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.