Silver-ion-mediated DNAzyme switch for the ultrasensitive and selective colorimetric detection of aqueous Ag+ and cysteine.

Two states, two applications! An Ag(+)-mediated DNAzyme switch has been designed to detect Ag(+) and cysteine with high sensitivity and selectivity. In the closed state, Ag(+) turns on the switch through the formation of cytosine-Ag(+)-cytosine base pairs, whereas adding cysteine turns off the open switch because it competitively binds to Ag(+). This feature endows the DNAzyme switch with two sensing applications.

[1]  E. Wang,et al.  Base-pairing directed folding of a bimolecular G-quadruplex: new insights into G-quadruplex-based DNAzymes. , 2009, Chemistry.

[2]  E. Wang,et al.  G-Quadruplex-based DNAzyme as a sensing platform for ultrasensitive colorimetric potassium detection. , 2009, Chemical communications.

[3]  Tao Li,et al.  Multifunctional G-quadruplex aptamers and their application to protein detection. , 2009, Chemistry.

[4]  Yi Lu,et al.  Highly sensitive "turn-on" fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA. , 2008, Chemical communications.

[5]  E. Wang,et al.  Chemiluminescence thrombin aptasensor using high-activity DNAzyme as catalytic label. , 2008, Chemical communications.

[6]  Shiqi Cao,et al.  Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. , 2008, Chemical communications.

[7]  B. Ye,et al.  Highly sensitive detection of mercury(II) ions by fluorescence polarization enhanced by gold nanoparticles. , 2008, Angewandte Chemie.

[8]  Chad A Mirkin,et al.  Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. , 2008, Analytical chemistry.

[9]  E. Wang,et al.  G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin. , 2008, Chemical communications.

[10]  M. Chamsaz,et al.  Triple-phase Single-drop Microextraction of Silver and Its Determination Using Graphite-Furnace Atomic-Absorption Spectrometry , 2008, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[11]  I. Willner,et al.  Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. , 2008, Angewandte Chemie.

[12]  Chih-Ching Huang,et al.  Detection of mercury(II) based on Hg2+ -DNA complexes inducing the aggregation of gold nanoparticles. , 2008, Chemical communications.

[13]  Chih-Ching Huang,et al.  Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(II) in aqueous solution. , 2008, Analytical chemistry.

[14]  Itamar Willner,et al.  A DNAzyme cascade for the amplified detection of Pb(2+) ions or L-histidine. , 2008, Chemical communications.

[15]  Xiaogang Liu,et al.  One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. , 2008, Journal of the American Chemical Society.

[16]  Chad A. Mirkin,et al.  A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. , 2008, Nano letters.

[17]  Tao Li,et al.  Enhanced catalytic DNAzyme for label-free colorimetric detection of DNA. , 2007, Chemical communications.

[18]  Yi Lu,et al.  Rational design of "turn-on" allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. , 2007, Angewandte Chemie.

[19]  T. Carell,et al.  DNA--metal base pairs. , 2007, Angewandte Chemie.

[20]  T. Carell,et al.  DNA‐Metall‐Basenpaare , 2007 .

[21]  Jens Müller,et al.  An artificial base pair, mediated by hydrogen bonding and metal-ion binding. , 2007, Angewandte Chemie.

[22]  Fabian-Alexander Polonius,et al.  Ein durch Wasserstoffbrücken und Metallionenbindung vermitteltes, künstliches Basenpaar , 2007 .

[23]  Chunhai Fan,et al.  Optical Detection of Mercury(II) in Aqueous Solutions by Using Conjugated Polymers and Label‐Free Oligonucleotides , 2007 .

[24]  C. Mirkin,et al.  Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. , 2007, Angewandte Chemie.

[25]  I. Willner,et al.  Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. , 2007, Journal of the American Chemical Society.

[26]  Takashi Fujimoto,et al.  MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. , 2006, Journal of the American Chemical Society.

[27]  C. Switzer,et al.  A purine-like nickel(II) base pair for DNA. , 2005, Angewandte Chemie.

[28]  Itamar Willner,et al.  Catalytic beacons for the detection of DNA and telomerase activity. , 2004, Journal of the American Chemical Society.

[29]  Kentaro Tanaka,et al.  A Discrete Self-Assembled Metal Array in Artificial DNA , 2003, Science.

[30]  D. Wood,et al.  Thermodynamic investigation of M-DNA: a novel metal ion-DNA complex. , 2003, Journal of inorganic biochemistry.

[31]  P. Schultz,et al.  A novel silver(i)-mediated DNA base pair. , 2002, Journal of the American Chemical Society.

[32]  Yasuyuki Yamada,et al.  Formation of silver(I)-mediated DNA duplex and triplex through an alternative base pair of pyridine nucleobases. , 2002, Journal of the American Chemical Society.

[33]  P. Schultz,et al.  Structure of a copper-mediated base pair in DNA. , 2001, Journal of the American Chemical Society.

[34]  Yingfu Li,et al.  DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. , 1998, Chemistry & biology.

[35]  L. Gruen Interaction of amino acids with silver(I) ions. , 1975, Biochimica et biophysica acta.