Least-squares learning control with guaranteed parameter convergence

Parameter convergence is of great importance as it enhances the overall stability and robustness properties of adaptive control systems. However, a stringent persistent-excitation (PE) condition usually has to be satisfied to achieve parameter convergence in adaptive control. In this paper, a least-squares learning control strategy without regressor filtering is presented to achieve parameter convergence at the absence of the PE condition. An additional modified modeling error that utilizes online recorded data is constructed to update parametric estimates, and an integral transformation is derived to avoid the time differentiation of plant states in the computation of the modified modeling error. An indirect adaptive control law equipped with a novel filtering-free least-squares estimation is proposed to guarantee exponential convergence of both tracking errors and parameter estimation errors by an interval-excitation (IE) condition which is much weaker than the PE condition. An illustrative example has verified effectiveness of the proposed approach.

[1]  David Naso,et al.  Precise position control of tubular linear motors with neural networks and composite learning , 2010 .

[2]  Weiping Li,et al.  Composite adaptive control of robot manipulators , 1989, Autom..

[3]  Marcus Johnson,et al.  Composite adaptive control for Euler-Lagrange systems with additive disturbances , 2010, Autom..

[4]  Yongping Pan,et al.  Model reference composite learning control without persistency of excitation , 2016 .

[5]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[6]  Dragan Nesic,et al.  Parameter and State Estimation of Nonlinear Systems Using a Multi-Observer Under the Supervisory Framework , 2014, IEEE Transactions on Automatic Control.

[7]  Stephen A Burns,et al.  Testing of Lagrange multiplier damped least-squares control algorithm for woofer-tweeter adaptive optics. , 2012, Applied optics.

[8]  Jan Albert Mulder,et al.  Full-Envelope Modular Adaptive Control of a Fighter Aircraft Using Orthogonal Least Squares , 2010 .

[9]  Henk Nijmeijer,et al.  Adaptive observers and parameter estimation for a class of systems nonlinear in the parameters , 2009, Autom..

[10]  Kok Lay Teo,et al.  Parameter estimation for nonlinear time-delay systems with noisy output measurements , 2015, Autom..

[11]  Haoyong Yu,et al.  Biomimetic composite learning for robot motion control , 2016, 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[12]  Azam Khalili,et al.  A Quality-aware Incremental LMS Algorithm for Distributed Adaptive Estimation , 2014, Int. J. Autom. Comput..

[13]  Sergio Bittanti,et al.  A new paradigm for parameter estimation in system modeling , 2013 .

[14]  Andrew R. Teel,et al.  Robust Finite-Time Parameter Estimation Using a Hybrid Systems Framework , 2012, IEEE Transactions on Automatic Control.

[15]  Byeong-Yeon Kim,et al.  A design of bilateral teleoperation systems using composite adaptive controller , 2013 .

[16]  Eric Johnson,et al.  Recursively updated least squares based modification term for adaptive control , 2010, Proceedings of the 2010 American Control Conference.

[17]  Anuradha M. Annaswamy,et al.  Composite adaptive posicast control for a class of LTI plants with known delay , 2013, Autom..

[18]  Brij N. Agrawal,et al.  Laser Beam Jitter Control Using Recursive-Least-Squares Adaptive Filters , 2011 .

[19]  Romeo Ortega,et al.  A parameter estimation approach to state observation of nonlinear systems , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[20]  Samer Riachy,et al.  A continuous-time framework for least squares parameter estimation , 2014, Autom..

[21]  Nhan T. Nguyen Least-Squares Model-Reference Adaptive Control with Chebyshev Orthogonal Polynomial Approximation , 2013, J. Aerosp. Inf. Syst..

[22]  Haoyong Yu,et al.  Online data‐driven composite adaptive backstepping control with exact differentiators , 2016 .

[23]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[24]  Yu Zhou,et al.  Composite adaptive fuzzy H∞ tracking control of uncertain nonlinear systems , 2013, Neurocomputing.

[25]  Farouq S. Mjalli,et al.  Recursive Least Squares-Based Adaptive Control of a Biodiesel Transesterification Reactor , 2010 .

[26]  Henk Nijmeijer,et al.  Experimental comparison of parameter estimation methods in adaptive robot control , 1995, Autom..

[27]  Haoyong Yu,et al.  Composite Learning From Adaptive Dynamic Surface Control , 2016, IEEE Transactions on Automatic Control.

[28]  Miroslav Krstic On using least-squares updates without regressor filtering in identification and adaptive control of nonlinear systems , 2009, Autom..

[29]  Fuchun Sun,et al.  Disturbance Observer Based Composite Learning Fuzzy Control of Nonlinear Systems with Unknown Dead Zone , 2017, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[30]  Vadim I. Utkin,et al.  Parameters estimation using sliding mode observer with shift operator , 2012, J. Frankl. Inst..

[31]  Mohamed Darouach,et al.  Composite learning: An efficient way of parameter estimation in adaptive control , 2016, 2016 35th Chinese Control Conference (CCC).

[32]  Christopher Edwards,et al.  State and Parameter Estimation for Nonlinear Delay Systems Using Sliding Mode Techniques , 2013, IEEE Transactions on Automatic Control.

[33]  Haoyong Yu,et al.  Composite learning control with application to inverted pendulums , 2015, 2015 Chinese Automation Congress (CAC).

[34]  P.J. Antsaklis,et al.  Intelligent Learning Control , 1995, IEEE Control Systems.

[35]  Haoyong Yu,et al.  Composite adaptive dynamic surface control using online recorded data , 2016 .

[36]  Derong Liu,et al.  Data‐based output feedback control using least squares estimation method for a class of nonlinear systems , 2014 .

[37]  Meng Joo Er,et al.  Composite adaptive fuzzy control for synchronizing generalized Lorenz systems. , 2012, Chaos.

[38]  Meng Joo Er,et al.  Composite learning from model reference adaptive fuzzy control , 2015, 2015 International Conference on Fuzzy Theory and Its Applications (iFUZZY).

[39]  P. Olver Nonlinear Systems , 2013 .

[40]  I. Kanellakopoulos,et al.  Nonlinearities enhance parameter convergence in output-feedback systems , 1998, IEEE Trans. Autom. Control..

[41]  Mourad Elloumi,et al.  Parametric estimation of interconnected nonlinear systems described by input-output mathematical models , 2016, Int. J. Autom. Comput..

[42]  Juri I. Neimark,et al.  Locally optimal adaptive control without persistent excitation , 1996, Autom..

[43]  Krishna Vijayaraghavan,et al.  Adaptive nonlinear observer for state and unknown parameter estimation in noisy systems , 2016, Int. J. Control.