A General Approach to Isolating Roots of a Bitstream Polynomial

We describe a new approach to isolate the roots (either real or complex) of a square-free polynomial F with real coefficients. It is assumed that each coefficient of F can be approximated to any specified error bound and refer to such coefficients as bitstream coefficients. The presented method is exact, complete and deterministic. Compared to previous approaches (Eigenwillig in Real root isolation for exact and approximate polynomials using Descartes’ rule of signs, PhD thesis, Universität des Saarlandes, 2008; Eigenwillig et al. in CASC, LNCS, 2005; Mehlhorn and Sagraloff in J. Symb. Comput. 46(1):70–90, 2011) we improve in two aspects. Firstly, our approach can be combined with any existing subdivision method for isolating the roots of a polynomial with rational coefficients. Secondly, the approximation demand on the coefficients and the bit complexity of our approach is considerably smaller. In particular, we can replace the worst-case quantity σ(F) by the average-case quantity $${\prod_{i=1}^n\sqrt[n] {\sigma_i}}$$ , where σi denotes the minimal distance of the i -th root ξi of F to any other root of F, σ(F) := miniσi, and n = deg F. For polynomials with integer coefficients, our method matches the best bounds known for existing practical algorithms that perform exact operations on the input coefficients.

[1]  Michael Sagraloff,et al.  An Elimination Method for Solving Bivariate Polynomial Systems: Eliminating the Usual Drawbacks , 2010, ALENEX.

[2]  Chee-Keng Yap,et al.  Almost tight recursion tree bounds for the Descartes method , 2006, ISSAC '06.

[3]  Kurt Mehlhorn,et al.  Isolating real roots of real polynomials , 2009, ISSAC '09.

[4]  Bernard Mourrain,et al.  Experimental evaluation and cross-benchmarking of univariate real solvers , 2009, SNC '09.

[5]  Chee-Keng Yap,et al.  A simple but exact and efficient algorithm for complex root isolation , 2011, ISSAC '11.

[6]  C. Yap,et al.  Amortized Bound for Root Isolation via Sturm Sequences , 2007 .

[7]  Thomas Lickteig,et al.  Sylvester-Habicht Sequences and Fast Cauchy Index Computation , 2001, J. Symb. Comput..

[8]  Arnold Schönhage,et al.  Quasi-GCD computations , 1985, J. Complex..

[9]  Michael Sagraloff,et al.  An efficient algorithm for the stratification and triangulation of an algebraic surface , 2010, Comput. Geom..

[10]  Alkiviadis G. Akritas,et al.  Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.

[11]  Jeremy Johnson,et al.  Algorithms for polynomial real root isolation , 1992 .

[12]  Jeremy R. Johnson,et al.  Polynomial real root isolation using approximate arithmetic , 1997, ISSAC.

[13]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[14]  Brian T. Smith,et al.  Error Bounds for Zeros of a Polynomial Based Upon Gerschgorin's Theorems , 1970, JACM.

[15]  Michael Kerber,et al.  Geometric algorithms for algebraic curves and surfaces , 2009 .

[16]  Ioannis Z. Emiris,et al.  On the complexity of real root isolation using continued fractions , 2008, Theor. Comput. Sci..

[17]  L. Zoretti Sur la résolution des équations numériques , 1909 .

[18]  Jürgen Gerhard,et al.  Modular Algorithms in Symbolic Summation and Symbolic Integration , 2005, Lecture Notes in Computer Science.

[19]  Michael Kerber,et al.  Fast and exact geometric analysis of real algebraic plane curves , 2007, ISSAC '07.

[20]  George E. Collins,et al.  Interval Arithmetic in Cylindrical Algebraic Decomposition , 2002, J. Symb. Comput..

[21]  B. Mourrain,et al.  The Bernstein Basis and Real Root Isolation , 2007 .

[22]  Victor Y. Pan,et al.  Solving a Polynomial Equation: Some History and Recent Progress , 1997, SIAM Rev..

[23]  Kurt Mehlhorn,et al.  A deterministic algorithm for isolating real roots of a real polynomial , 2011, J. Symb. Comput..

[24]  Kurt Mehlhorn,et al.  New bounds for the Descartes method , 2005, SIGS.

[25]  Kurt Mehlhorn,et al.  A Descartes Algorithm for Polynomials with Bit-Stream Coefficients , 2005, CASC.

[26]  Arnold Schönhage,et al.  The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .

[27]  P. Zimmermann,et al.  Efficient isolation of polynomial's real roots , 2004 .

[28]  Arno Eigenwillig,et al.  Real root isolation for exact and approximate polynomials using Descartes' rule of signs , 2008 .

[29]  Alkiviadis G. Akritas,et al.  A Comparative Study of Two Real Root Isolation Methods , 2005 .

[30]  Kurt Mehlhorn,et al.  Faster algorithms for computing Hong's bound on absolute positiveness , 2010, J. Symb. Comput..

[31]  D. P. Mitchell Robust ray intersection with interval arithmetic , 1990 .

[32]  S. Smale The fundamental theorem of algebra and complexity theory , 1981 .

[33]  Alkiviadis G. Akritas,et al.  The fastest exact algorithms for the isolation of the real roots of a polynomial equation , 1980, Computing.

[34]  Arno Eigenwillig Short Communication: On multiple roots in Descartes' Rule and their distance to roots of higher derivatives , 2007 .

[35]  V. Pan Sequential and parallel complexity of approximate evaluation of polynomial zeros , 1987 .