Modified embedded-atom method interatomic potentials for pure Mn and the Fe–Mn system

[1]  C. J. Smithells,et al.  Smithells metals reference book , 1949 .

[2]  C. Kittel Introduction to solid state physics , 1954 .

[3]  C. S. Barrett Structure of Metals; Crystallographic Methods, Principles, and Data , 1966 .

[4]  M. Rosen Elastic Moduli and Ultrasonic Attenuation of Polycrystalline Europium from 4.2 to 300°K , 1968 .

[5]  Y. Endoh,et al.  Antiferromagnetism of γ Iron Manganes Alloys , 1971 .

[6]  H. Schumann Einfluß der Stapelfehlerenergie auf den kristallographischen Umgitterungsmechanismus der γ/α‐Umwandlung in hochlegierten Stählen , 1974 .

[7]  G. P. Tiwari,et al.  A correlation between vacancy formation energy and cohesive energy , 1975 .

[8]  M. Takahashi,et al.  Magnetic contribution to the bulk modulus of 3d-transition metal alloys , 1983 .

[9]  M. Baskes,et al.  Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals , 1983 .

[10]  Joshua R. Smith,et al.  Universal features of the equation of state of metals , 1984 .

[11]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[12]  Weiming Huang An assessment of the Fe-Mn system , 1987 .

[13]  Enthalpies of mixing in the iron-manganese system by direct reaction calorimetry , 1987 .

[14]  T. Kikegawa,et al.  The high-pressure equation of state of α-Mn to 42 GPa , 1988 .

[15]  A. K. Niessen,et al.  Cohesion in metals , 1988 .

[16]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[17]  岡本 博明,et al.  Phase diagrams of binary iron alloys , 1993 .

[18]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[19]  Takemura,et al.  Stability and the equation of state of alpha -manganese under ultrahigh pressure. , 1995, Physical review. B, Condensed matter.

[20]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[21]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[22]  Michael I. Baskes,et al.  Determination of modified embedded atom method parameters for nickel , 1997 .

[23]  J. Jun,et al.  The influence of Mn content on microstructure and damping capacity in Fe–(17∼23)%Mn alloys , 1998 .

[24]  Young‐kook Lee,et al.  Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system , 2000 .

[25]  Michael I. Baskes,et al.  Second nearest-neighbor modified embedded-atom-method potential , 2000 .

[26]  B. Aksakal,et al.  Production and indentation analysis of WC/Fe–Mn as an alternative to cobalt-bonded hardmetals , 2001 .

[27]  Michael I. Baskes,et al.  Second nearest-neighbor modified embedded atom method potentials for bcc transition metals , 2001 .

[28]  V. Lindroos,et al.  Effect of nitrogen on damping, mechanical and corrosive properties of Fe–Mn alloys , 2002 .

[29]  M. Baskes,et al.  Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method , 2003 .

[30]  J. Hafner,et al.  Understanding the complex metallic element Mn. I. Crystalline and noncollinear magnetic structure of α-Mn , 2003 .

[31]  P. Weisbecker,et al.  Thermodynamic and structural studies on nitrided Fe–1.62%Mn and Fe–0.56%V alloys , 2003 .

[32]  V. Bliznuk,et al.  The investigation of Fe–Mn-based alloys with shape memory effect by small-angle scattering of polarized neutrons , 2003 .

[33]  F. Sirotti,et al.  Surface alloying and mixing at the Mn/Fe(001) interface: Real-time photoelectron spectroscopy and modified embedded atom simulations , 2003 .

[34]  E. .. Mittemeijer,et al.  Enthalpy of formation and heat capacity of Fe-Mn alloys , 2003 .

[35]  D. Hobbs,et al.  Understanding the complex metallic element Mn. II. Geometric frustration in β-Mn, phase stability, and phase transitions , 2003 .

[36]  E. .. Mittemeijer,et al.  Reevaluation of the Fe-Mn phase diagram , 2004 .

[37]  A modified embedded atom method interatomic potential for the Cu–Ni system , 2004 .

[38]  B. Wirth,et al.  Modified embedded-atom method interatomic potential for the Fe-Cu alloy system and cascade simulations on pure Fe and Fe-Cu alloys , 2005 .

[39]  Tae-Ho Lee,et al.  A modified embedded-atom method interatomic potential for the Fe–N system: A comparative study with the Fe–C system , 2006 .

[40]  Byeong-Joo Lee,et al.  Modified embedded-atom method interatomic potential for the Fe–Pt alloy system , 2006 .

[41]  Michael I. Baskes,et al.  Modified embedded-atom method interatomic potentials for Ti and Zr , 2006 .

[42]  Byeong-Joo Lee,et al.  A modified embedded-atom method interatomic potential for the Fe–H system , 2006 .

[43]  Byeong-Joo Lee,et al.  Modified embedded-atom method interatomic potentials for the Fe-Nb and Fe-Ti binary systems , 2008 .

[44]  Byeong-Joo Lee,et al.  A modified embedded-atom method interatomic potential for the Cu–Zr system , 2004 .

[45]  Young-Han Shin,et al.  A modified embedded-atom method interatomic potential for Germanium , 2008 .