Discrete laplace operators: no free lunch

Discrete Laplace operators are ubiquitous in applications spanning geometric modeling to simulation. For robustness and efficiency, many applications require discrete operators that retain key structural properties inherent to the continuous setting. Building on the smooth setting, we present a set of natural properties for discrete Laplace operators for triangular surface meshes. We prove an important theoretical limitation: discrete Laplacians cannot satisfy all natural properties; retroactively, this explains the diversity of existing discrete Laplace operators. Finally, we present a family of operators that includes and extends well-known and widely-used operators.

[1]  Franz Aurenhammer,et al.  A criterion for the affine equivalence of cell complexes inRd and convex polyhedra inRd+1 , 1987, Discret. Comput. Geom..

[2]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[3]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[4]  Gabriel Taubin,et al.  Geometric Signal Processing on Polygonal Meshes , 2000, Eurographics.

[5]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[6]  Hao Zhang Discrete Combinatorial Laplacian Operators for Digital Geometry Processing , 2004 .

[7]  Guoliang Xu Discrete Laplace-Beltrami operators and their convergence , 2004, Comput. Aided Geom. Des..

[8]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[9]  Peter Schröder,et al.  An algorithm for the construction of intrinsic delaunay triangulations with applications to digital geometry processing , 2006, Computing.

[10]  K. Polthier,et al.  On the convergence of metric and geometric properties of polyhedral surfaces , 2007 .

[11]  Craig Gotsman,et al.  Discrete one-forms on meshes and applications to 3D mesh parameterization , 2006, Comput. Aided Geom. Des..

[12]  Eitan Grinspun,et al.  Discrete quadratic curvature energies , 2006, Comput. Aided Geom. Des..

[13]  Hans-Peter Seidel,et al.  Spherical barycentric coordinates , 2006, SGP '06.

[14]  Kai Hormann,et al.  A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..

[15]  Alexander I. Bobenko,et al.  A Discrete Laplace–Beltrami Operator for Simplicial Surfaces , 2005, Discret. Comput. Geom..

[16]  D. Glickenstein Geometric triangulations and discrete Laplacians on manifolds , 2005, math/0508188.