Characterizations of Lipschitzian Stability in Nonlinear Programming

Nonlinear programming problems are analyzed for Lipschitz and upper-Lipschitz behavior of their solutions and stationary points under general perturbations. Facts from a diversity of sources are put together to obtain new characterizations of several local stability properties.

[1]  Anthony V. Fiacco,et al.  Sensitivity analysis for nonlinear programming using penalty methods , 1976, Math. Program..

[2]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[3]  S. M. Robinson Analysis and computation of fixed points , 1980 .

[4]  S. M. Robinson Some continuity properties of polyhedral multifunctions , 1981 .

[5]  S. M. Robinson Generalized equations and their solutions, part II: Applications to nonlinear programming , 1982 .

[6]  Jean-Pierre Aubin,et al.  Lipschitz Behavior of Solutions to Convex Minimization Problems , 1984, Math. Oper. Res..

[7]  Jerzy Kyparisis,et al.  On uniqueness of Kuhn-Tucker multipliers in nonlinear programming , 1985, Math. Program..

[8]  Stephen M. Robinson,et al.  Local epi-continuity and local optimization , 1987, Math. Program..

[9]  A. Shapiro Sensitivity analysis of nonlinear programs and differentiability properties of metric projections , 1988 .

[10]  R. Rockafellar Proto-Differentiability of Set-Valued Mappings and its Applications in Optimization☆ , 1989 .

[11]  D. Klatte,et al.  Strong stability of stationary solutions and Karush-Kuhn-Tucker points in nonlinear optimization , 1991 .

[12]  B. Kummer Lipschitzian inverse functions, directional derivatives, and applications inC1,1 optimization , 1991 .

[13]  Hubertus Th. Jongen,et al.  Implicit functions and sensitivity of stationary points , 1990, Math. Program..

[14]  R. Tyrrell Rockafellar,et al.  Sensitivity analysis for nonsmooth generalized equations , 1992, Math. Program..

[15]  T. Zolezzi,et al.  Well-Posed Optimization Problems , 1993 .

[16]  Jong-Shi Pang,et al.  Convergence of splitting and Newton methods for complementarity problems: An application of some sensitivity results , 1993, Math. Program..

[17]  B. Mordukhovich Lipschitzian stability of constraint systems and generalized equations , 1994 .

[18]  J. Frédéric Bonnans,et al.  Quadratic Growth and Stability in Convex Programming Problems With Multiple Solutions , 1994 .

[19]  J. F. Bonnans,et al.  Local analysis of Newton-type methods for variational inequalities and nonlinear programming , 1994 .

[20]  D. Ward Characterizations of strict local minima and necessary conditions for weak sharp minima , 1994 .

[21]  D. Klatte On Quantitative Stability for C1,1 Programs , 1995 .

[22]  Seetharama Gowda,et al.  On the Pseudo-lipschitzian Behavior of the Inverse of a Piecewise Aane Function , 1995 .

[23]  Jiming Liu Sensitivity Analysis in Nonlinear Programs and Variational Inequalities via Continuous Selections , 1995 .

[24]  Jong-Shi Pang Necessary and Sufficient Conditions for Solution Stability of Parametric Nonsmooth Equations , 1995 .

[25]  J. Frédéric Bonnans,et al.  Pseudopower expansion of solutions of generalized equations and constrained optimization problems , 1995, Math. Program..

[26]  Adam B. Levy,et al.  Sensitivity of Solutions in Nonlinear Programming Problems with Nonunique Multipliers , 1995 .

[27]  Stephan Dempe,et al.  Directional derivatives of the solution of a parametric nonlinear program , 1995, Math. Program..

[28]  Asen L. Dontchev,et al.  Implicit function theorems for generalized equations , 1995, Math. Program..

[29]  Adam B. Levy,et al.  Implicit multifunction theorems for the sensitivity analysis of variational conditions , 1996, Math. Program..

[30]  R. Tyrrell Rockafellar,et al.  Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets , 1996, SIAM J. Optim..

[31]  Alexander Shapiro,et al.  Optimization Problems with Perturbations: A Guided Tour , 1998, SIAM Rev..

[32]  O. Mangasarian Optimality Conditions in Smooth Nonlinear Programming , 2022 .