INFERCNMR: A 13C NMR Interpretive Library Search System

INFERCNMR is an automated (13)C NMR spectrum interpretation aid for use either as a stand-alone program or as a component of a comprehensive, computer-based system for the characterization of chemical structure. The program is an interpretive library search which requires a database of assigned (13)C NMR spectra. An interpretive library search does not require overall structural similarity between an unknown and a library entry in order to retrieve a substructure common to both. Input consists of the chemical shift and one-bond proton-carbon multiplicity of each signal in the spectrum, and the molecular formula of the unknown. Program output is one or more substructures predicted to be present in the unknown, each of which is assigned an estimated prediction accuracy.

[1]  Morton E. Munk,et al.  Table-driven procedure for infrared spectrum interpretation , 1983 .

[2]  Kurt Varmuza,et al.  Automatic classification of infrared spectra using a set of improved expert-based features , 1999 .

[3]  Morton E. Munk,et al.  Computer prediction of substructures from carbon-13 nuclear magnetic resonance spectra , 1982 .

[4]  Wolfgang Bremser,et al.  Structure Elucidation and Artificial Intelligence , 1988 .

[5]  J. Zupan,et al.  Combined retrieval system for infrared, mass, and carbon-13 nuclear magnetic resonance spectra , 1977 .

[6]  E. Pretsch,et al.  Similarity search for a 1H-NMR spectroscopic data base , 1988 .

[7]  Á. Cañete,et al.  Complete assignment of the 1H and 13C NMR spectra of 2‐phenyl‐3H‐naphtho[2,1‐b][1,4]oxazin‐3‐one, 2‐p‐methoxyphenylnaphtho[1,2‐d]oxazole and 2‐phenylnaphtho[1,2‐d]oxazole. Concerted use of one‐ and two‐dimensional NMR techniques , 1998 .

[8]  F. McLafferty,et al.  Computer-aided interpretation of mass spectra. III. Self-training interpretive and retrieval system , 1973 .

[9]  Soumen Chakrabarti,et al.  Similarity and Clustering , 2003 .

[10]  Neil A. B. Gray,et al.  Computer-assisted structure elucidation , 1986 .

[11]  Charles L. Wilkins,et al.  Joint Neural Network Interpretation of Infrared and Mass Spectra , 1996, J. Chem. Inf. Comput. Sci..

[12]  Wolf-Dietrich Ihlenfeldt,et al.  Computation and management of chemical properties in CACTVS: An extensible networked approach toward modularity and compatibility , 1994, J. Chem. Inf. Comput. Sci..

[13]  Marcelo J. P. Ferreira,et al.  Automatic identification of terpenoid skeletons through 13C nuclear magnetic resonance data disfunctionalization , 2001 .

[14]  Morton E. Munk,et al.  The Neural Network as a Tool for Multispectral Interpretation , 1996, J. Chem. Inf. Comput. Sci..

[15]  P. Crews,et al.  Novel marine sponge alkaloids. 1. Plakinidine A and B, anthelmintic active alkaloids from a Plakortis sponge , 1990 .

[16]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[17]  Morton E. Munk,et al.  A computerized infrared spectral interpreter as a tool in structure elucidation of natural products , 1977 .

[18]  Shoei‐Sheng Lee,et al.  Lignans from Phyllanthus urinaria. , 2003, Phytochemistry.

[19]  W. Bremser,et al.  Mutual assignment of subspectra and substructures—A way to structure elucidation by 13C NMR spectroscopy† , 1975 .

[20]  C. Steinbeck Recent developments in automated structure elucidation of natural products. , 2004, Natural product reports.

[21]  Wojciech A. Trybulec Partially Ordered Sets , 1990 .

[22]  R. Schwarzenbach,et al.  A computer system for structural identification of organic compounds from 13C NMR data , 1976 .

[23]  Kurt Varmuza,et al.  Pattern recognition in chemistry , 1980 .

[24]  Jean-Marc Nuzillard,et al.  New Improvements in Automatic Structure Elucidation Using the LSD (Logic for Structure Determination) and the SISTEMAT Expert Systems , 2010, Natural product communications.

[25]  Martin Will,et al.  Fully Automated Structure Elucidation - A Spectroscopist's Dream Comes True , 1996, J. Chem. Inf. Comput. Sci..

[26]  Morton E. Munk Computer-Based Structure Determination: Then and Now , 1998, J. Chem. Inf. Comput. Sci..

[27]  P. Besada,et al.  Complete assignment of the 1H and 13C NMR spectra of cis and trans isonucleoside derivatives of purine with a tetrahydropyran ring , 2010, Magnetic resonance in chemistry : MRC.

[28]  W. Bremser The importance of multiplicities and substructures for the evaluation of relevant spectral similarities for computer aided interpretation of 13C NMR spectra , 1977 .

[29]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[30]  Wolfgang Robien,et al.  CSEARCH: a computer program for identification of organic compounds and fully automated assignment of carbon-13 nuclear magnetic resonance spectra , 1985, J. Chem. Inf. Comput. Sci..

[31]  Denise L. G. Fromanteau,et al.  A Constraints Generator in Structural Determination by Microcomputer , 1993, Comput. Chem..

[32]  Morton E. Munk,et al.  Applications of a HOUDINI-Based Structure Elucidation System , 2003, J. Chem. Inf. Comput. Sci..

[33]  William L. Jorgensen,et al.  Journal of Chemical Information and Modeling , 2005, J. Chem. Inf. Model..

[34]  M. Stayton,et al.  The syringolides: Bacterial C-glycosyl lipids that trigger plant disease resistance , 1993 .

[35]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[36]  C. Kaiser,et al.  Two monoisoprenylated flavonoids from Vellozia graminifolia , 1998 .

[37]  F. McLafferty,et al.  Computer‐aided interpretation of mass spectra , 1969 .

[38]  Antony J. Williams,et al.  Computer-assisted structure verification and elucidation tools in NMR-based structure elucidation , 2008 .

[39]  G. Baddeley,et al.  Carbon‐13 nuclear magnetic resonance spectroscopy of naturally‐occurring substances‐ LVII Triterpenes related to lupane and hopane , 1978 .

[40]  Michael H. Kutner Applied Linear Statistical Models , 1974 .

[41]  Gary Chartrand,et al.  Applied and algorithmic graph theory , 1992 .

[42]  I. S. Ismail,et al.  Modified limonoids from the leaves of Sandoricum koetjape. , 2003, Phytochemistry.

[43]  P. Jurs,et al.  Computer-Enhanced Analytical Spectroscopy , 1988 .

[44]  William Lingran Chen,et al.  Application of the Maximal Common Substructure Algorithm to Automatic Interpretation of 13C-NMR Spectra , 1994, J. Chem. Inf. Comput. Sci..

[45]  W. Meisel,et al.  The role of pattern recognition in the computer-aided classification of mass spectra , 1979 .

[46]  F. M. Schell,et al.  Carbon-13 nuclear magnetic resonance spectroscopy of naturally occurring substances. Alkaloids , 1974 .

[47]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[48]  J. Clerc,et al.  Computer system for structural identification of organic compounds from spectroscopic data , 1974 .

[49]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[50]  J. Zupan,et al.  Hierarchical tree based storage, retrieval, and interpretation of infrared spectra. , 1985, Analytical chemistry.

[51]  Craig A. Shelley,et al.  Computer-assisted interpretation of carbon-13 nuclear magnetic resonance spectra applied to structure elucidation of natural products , 1977 .

[52]  Johnz Willett Similarity and Clustering in Chemical Information Systems , 1987 .

[53]  Morton E. Munk,et al.  Structure Determination by Computer‐based Spectrum Interpretation , 2002 .

[54]  M. Jaspars Computer assisted structure elucidation of natural products using two-dimensional NMR spectroscopy† , 1999 .

[55]  E. Breitmaier Structure elucidation by NMR in organic chemistry , 1993 .

[56]  Gerard J. Kleywegt,et al.  Artificial intelligence used for the interpretation of combined spectral data. 3. Automated generation of interpretation rules for infrared spectral data , 1987, J. Chem. Inf. Comput. Sci..

[57]  Peter C. Jurs,et al.  Computer Software Applications in Chemistry , 1986 .