Simulating complex quantum networks with time crystals

A graph-theoretic approach to characterize discrete time crystals and use them as a complex quantum network simulator. Crystals arise as the result of the breaking of a spatial translation symmetry. Similarly, translation symmetries can also be broken in time so that discrete time crystals appear. Here, we introduce a method to describe, characterize, and explore the physical phenomena related to this phase of matter using tools from graph theory. The analysis of the graphs allows to visualizing time-crystalline order and to analyze features of the quantum system. For example, we explore in detail the melting process of a minimal model of a period-2 discrete time crystal and describe it in terms of the evolution of the associated graph structure. We show that during the melting process, the network evolution exhibits an emergent preferential attachment mechanism, directly associated with the existence of scale-free networks. Thus, our strategy allows us to propose a previously unexplored far-reaching application of time crystals as a quantum simulator of complex quantum networks.

[1]  2019 14th International Conference on Computer Science & Education (ICCSE) , 2019 .

[2]  J. Tangpanitanon,et al.  Quantum supremacy with analog quantum processors for material science and machine learning , 2019, 1906.03860.

[3]  J. Chalker,et al.  Percolation in Fock space as a proxy for many-body localization , 2018, Physical Review B.

[4]  Anthony D. Castellano,et al.  Genuine 12-Qubit Entanglement on a Superconducting Quantum Processor. , 2018, Physical review letters.

[5]  P. Straten,et al.  Observation of a Space-Time Crystal in a Superfluid Quantum Gas. , 2018, Physical review letters.

[6]  W. Munro,et al.  Ergodic-localized junctions in periodically driven systems , 2018, Physical Review B.

[7]  P. Hannaford,et al.  Time crystals: Analysis of experimental conditions , 2018, Physical Review A.

[8]  R. Blum,et al.  Observation of Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System. , 2018, Physical review letters.

[9]  T. S. Mahesh,et al.  Temporal Order in Periodically Driven Spins in Star-Shaped Clusters. , 2017, Physical review letters.

[10]  K. Sacha,et al.  Time crystals: a review , 2017, Reports on progress in physics. Physical Society.

[11]  B. Foxen,et al.  Spectral signatures of many-body localization with interacting photons , 2017 .

[12]  Hengyun Zhou,et al.  Observation of discrete time-crystalline order in a disordered dipolar many-body system , 2016, Nature.

[13]  P. W. Hess,et al.  Observation of a discrete time crystal , 2016, Nature.

[14]  N. Yao,et al.  Discrete Time Crystals: Rigidity, Criticality, and Realizations. , 2016, Physical review letters.

[15]  David A. Huse,et al.  Critical Properties of the Many-Body Localization Transition , 2016, 1607.05756.

[16]  A. Eckardt,et al.  Colloquium: Atomic quantum gases in periodically driven optical lattices , 2016, 1606.08041.

[17]  S Restrepo,et al.  Driven Open Quantum Systems and Floquet Stroboscopic Dynamics. , 2016, Physical review letters.

[18]  Bela Bauer,et al.  Floquet Time Crystals. , 2016, Physical review letters.

[19]  Roderich Moessner,et al.  Phase Structure of Driven Quantum Systems. , 2015, Physical review letters.

[20]  M. Rigol,et al.  From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics , 2015, 1509.06411.

[21]  Egidijus Anisimovas,et al.  Consistent high-frequency approximation for periodically driven quantum systems , 2015 .

[22]  S. Parameswaran,et al.  Universal properties of many-body delocalization transitions , 2015, 1501.03501.

[23]  K. Sacha Modeling spontaneous breaking of time-translation symmetry , 2014, 1410.3638.

[24]  R. Nandkishore,et al.  Many-Body Localization and Thermalization in Quantum Statistical Mechanics , 2014, 1404.0686.

[25]  Ehud Altman,et al.  Universal dynamics and renormalization in many body localized systems , 2014, 1408.2834.

[26]  L. D'alessio,et al.  Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering , 2014, 1407.4803.

[27]  Ville Bergholm,et al.  Community Detection in Quantum Complex Networks , 2013, 1310.6638.

[28]  Sabre Kais,et al.  Degree distribution in quantum walks on complex networks , 2013, 1305.6078.

[29]  Miguel-Angel Martin-Delgado,et al.  Quantum Google in a Complex Network , 2013, Scientific Reports.

[30]  C. Emary,et al.  ac-Driven quantum phase transition in the Lipkin-Meshkov-Glick model. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Sun Yong,et al.  Using complex network theory in the Internet engineering , 2012, 2012 7th International Conference on Computer Science & Education (ICCSE).

[32]  Frank Wilczek,et al.  Quantum time crystals. , 2012, Physical review letters.

[33]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[34]  Sergey N. Dorogovtsev,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW (Physics) , 2003 .

[35]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[36]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[37]  P. Hänggi,et al.  Driven quantum tunneling , 1998 .

[38]  H.Nakamura,et al.  Time-Reversal Symmetry Breaking Superconductivity in Sr2RuO4 , 1998, cond-mat/9808159.

[39]  S. Girvin,et al.  Continuous quantum phase transitions , 1996, cond-mat/9609279.

[40]  M. Srednicki,et al.  Chaos and quantum thermalization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  Vladimir F. Lazutkin,et al.  Kam Theory and Semiclassical Approximations to Eigenfunctions , 1993 .

[42]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[43]  P. W. Higgs Broken Symmetries and the Masses of Gauge Bosons , 1964 .

[44]  R. C. Macridis A review , 1963 .

[45]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[46]  L. Cooper,et al.  Theory of superconductivity , 1957 .

[47]  K. Cheng Theory of Superconductivity , 1948, Nature.

[48]  R. Romer,et al.  Tables of functions with formulae and curves , 1934 .