A model reduction method for the post-buckling analysis of cellular microstructures

[1]  Julien Yvonnet,et al.  Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction , 2008 .

[2]  Julien Yvonnet,et al.  The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains , 2007, J. Comput. Phys..

[3]  Jan Dirk Jansen,et al.  Accelerating iterative solution methods using reduced‐order models as solution predictors , 2006 .

[4]  Charbel Farhat,et al.  Reduced-order fluid/structure modeling of a complete aircraft configuration , 2006 .

[5]  F. H. Harlow,et al.  A stochastic constitutive model for disordered cellular materials: Finite-strain uni-axial compression , 2006 .

[6]  Walter K. Vonach,et al.  Buckling in Thin Walled Micro and Meso Structures of Lightweight Materials and Material Compounds , 2006 .

[7]  Michel Potier-Ferry,et al.  Solving plasticity problems by a perturbation technique , 2005 .

[8]  Nicolas Triantafyllidis,et al.  On the stability of Kelvin cell foams under compressive loads , 2005 .

[9]  D. Ryckelynck,et al.  A priori hyperreduction method: an adaptive approach , 2005 .

[10]  Pierre Suquet,et al.  Computational analysis of nonlinear composite structures using the Nonuniform Transformation Field Analysis , 2004 .

[11]  V. Kouznetsova,et al.  Multi-scale second-order computational homogenization of multi-phase materials : a nested finite element solution strategy , 2004 .

[12]  Hamid Zahrouni,et al.  Asymptotic Numerical Method for strong nonlinearities , 2004 .

[13]  J. Michel,et al.  Nonuniform transformation field analysis , 2003 .

[14]  F. Feyel A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .

[15]  Marcus Meyer,et al.  Efficient model reduction in non-linear dynamics using the Karhunen-Loève expansion and dual-weighted-residual methods , 2003 .

[16]  Hamid Zahrouni,et al.  Asymptotic numerical method for problems coupling several nonlinearities , 2002 .

[17]  C. Miehe,et al.  Computational micro-to-macro transitions of discretized microstructures undergoing small strains , 2002 .

[18]  H. P. Lee,et al.  PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS—PART I: THEORY , 2002 .

[19]  N. Kikuchi,et al.  A class of general algorithms for multi-scale analyses of heterogeneous media , 2001 .

[20]  J. Marsden,et al.  Dimensional model reduction in non‐linear finite element dynamics of solids and structures , 2001 .

[21]  Somnath Ghosh,et al.  A multi-level computational model for multi-scale damage analysis in composite and porous materials , 2001 .

[22]  J. Cadou,et al.  A new reduced basis method for non-linear problems , 2001 .

[23]  Manuel Doblaré,et al.  Imposing essential boundary conditions in the natural element method by means of density-scaled?-shapes , 2000 .

[24]  J. Marsden,et al.  Reconstruction equations and the Karhunen—Loéve expansion for systems with symmetry , 2000 .

[25]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[26]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[27]  J. Schröder,et al.  Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials , 1999 .

[28]  Juliette Brunelot Simulation de la mise en forme à chaud par la Méthode Asymptotique Numerique , 1999 .

[29]  Arne Dür,et al.  On the Optimality of the Discrete Karhunen--Loève Expansion , 1998 .

[30]  M. Schraad,et al.  ONSET OF FAILURE IN ALUMINUM HONEYCOMBS UNDER GENERAL IN-PLANE LOADING , 1998 .

[31]  P. Vannucci,et al.  An asymptotic-numerical method to compute bifurcating branches , 1998 .

[32]  W. Brekelmans,et al.  Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling , 1998 .

[33]  Somnath Ghosh,et al.  Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model , 1996 .

[34]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[35]  Kenjiro Terada,et al.  Nonlinear homogenization method for practical applications , 1995 .

[36]  B. Cochelin A path-following technique via an asymptotic-numerical method , 1994 .

[37]  George J. Dvorak,et al.  The modeling of inelastic composite materials with the transformation field analysis , 1994 .

[38]  Bruno Cochelin,et al.  Asymptotic-numerical methods and pade approximants for non-linear elastic structures , 1994 .

[39]  Bruno Cochelin,et al.  An asymptotic‐numerical method to compute the postbuckling behaviour of elastic plates and shells , 1993 .

[40]  Ernst P. Mücke,et al.  Three-dimensional alpha shapes , 1992 .

[41]  N. Kikuchi,et al.  Preprocessing and postprocessing for materials based on the homogenization method with adaptive fini , 1990 .

[42]  Michel Potier-Ferry,et al.  A New method to compute perturbed bifurcations: Application to the buckling of imperfect elastic structures , 1990 .

[43]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[44]  O. C. Zienkiewicz,et al.  The Finite Element Method: Basic Formulation and Linear Problems , 1987 .

[45]  G. Golub Matrix computations , 1983 .

[46]  J. M. T. Thompson,et al.  The non-linear perturbation analysis of discrete structural systems , 1968 .

[47]  Michel Loève,et al.  Probability Theory I , 1977 .

[48]  K. Karhunen Zur Spektraltheorie stochastischer prozesse , 1946 .

[49]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .