Challenges in planet formation

Over the past two decades, large strides have been made in the field of planet formation. Yet fundamental questions remain. Here we review our state of understanding of five fundamental bottlenecks in planet formation. These are the following: (1) the structure and evolution of protoplanetary disks; (2) the growth of the first planetesimals; (3) orbital migration driven by interactions between protoplanets and gaseous disk; (4) the origin of the Solar System's orbital architecture; and (5) the relationship between observed super-Earths and our own terrestrial planets. Given our lack of understanding of these issues, even the most successful formation models remain on shaky ground.

[1]  D. Lin,et al.  On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets , 1986 .

[2]  J. Margot,et al.  ARE PLANETARY SYSTEMS FILLED TO CAPACITY? A STUDY BASED ON KEPLER RESULTS , 2013, 1302.7190.

[3]  M. Duncan,et al.  Growing the gas-giant planets by the gradual accumulation of pebbles , 2015, Nature.

[4]  S. Tremaine,et al.  THE STATISTICS OF MULTI-PLANET SYSTEMS , 2011, 1106.5403.

[5]  J. Laskar Large scale chaos and the spacing of the inner planets. , 1997 .

[6]  R. Nelson,et al.  On the formation of planetary systems via oligarchic growth in thermally evolving viscous discs , 2014, 1408.6993.

[7]  C. Dominik,et al.  Passive Irradiated Circumstellar Disks with an Inner Hole , 2001, astro-ph/0106470.

[8]  Avi M. Mandell,et al.  Observable consequences of planet formation models in systems with close-in terrestrial planets , 2007, 0711.2015.

[9]  Y. Alibert,et al.  Close-in planetesimal formation by pile-up of drifting pebbles , 2016, 1607.05734.

[10]  C. Ormel,et al.  On the growth of pebble-accreting planetesimals , 2015, 1511.03903.

[11]  C. Gammie,et al.  Transport and Accretion in Planet-Forming Disks , 2014, 1401.7306.

[12]  S. Raymond,et al.  Terrestrial planet formation constrained by Mars and the structure of the asteroid belt , 2015, 1508.01365.

[13]  W. Ward Protoplanet Migration by Nebula Tides , 1997 .

[14]  W. Bottke,et al.  Growing the terrestrial planets from the gradual accumulation of submeter-sized objects , 2015, Proceedings of the National Academy of Sciences.

[15]  S. Andrews,et al.  ON THE OUTER EDGES OF PROTOPLANETARY DUST DISKS , 2013, 1311.5222.

[16]  J. Stone,et al.  WIND-DRIVEN ACCRETION IN PROTOPLANETARY DISKS. I. SUPPRESSION OF THE MAGNETOROTATIONAL INSTABILITY AND LAUNCHING OF THE MAGNETOCENTRIFUGAL WIND , 2013, 1301.0318.

[17]  E. Ford,et al.  A resonant chain of four transiting, sub-Neptune planets , 2016, Nature.

[18]  Yanqin Wu,et al.  Spacing of Kepler Planets: Sculpting by Dynamical Instability , 2015, 1502.05449.

[19]  F. Albarède,et al.  Pb–Pb dating constraints on the accretion and cooling history of chondrites , 2007 .

[20]  S. Inutsuka,et al.  PROTOPLANETARY DISK WINDS VIA MAGNETOROTATIONAL INSTABILITY: FORMATION OF AN INNER HOLE AND A CRUCIAL ASSIST FOR PLANET FORMATION , 2009, 0911.0311.

[21]  E. Kokubo,et al.  MERGING CRITERIA FOR GIANT IMPACTS OF PROTOPLANETS , 2011, 1109.4330.

[22]  Alessandro Morbidelli,et al.  Building Terrestrial Planets , 2012, 1208.4694.

[23]  E. Ostriker,et al.  Dissipation in Compressible Magnetohydrodynamic Turbulence , 1998, astro-ph/9809357.

[24]  X. Bai HALL-EFFECT-CONTROLLED GAS DYNAMICS IN PROTOPLANETARY DISKS. I. WIND SOLUTIONS AT THE INNER DISK , 2014, 1402.7102.

[25]  Andrew Cumming,et al.  The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets , 2008, 0803.3357.

[26]  T. Henning,et al.  Dust Sedimentation and Self-sustained Kelvin-Helmholtz Turbulence in Protoplanetary Disk Midplanes , 2005, astro-ph/0512272.

[27]  G. Mellema,et al.  Halting type I planet migration in non-isothermal disks , 2006, astro-ph/0608658.

[28]  A. G. W. Cameron,et al.  The origin of the moon and the single-impact hypothesis III. , 1991 .

[29]  A. Johansen,et al.  The growth of planets by pebble accretion in evolving protoplanetary discs , 2015 .

[30]  W. Kley,et al.  Migration of massive planets in accreting disks , 2014, 1411.3190.

[31]  J. Fortney,et al.  UNDERSTANDING THE MASS–RADIUS RELATION FOR SUB-NEPTUNES: RADIUS AS A PROXY FOR COMPOSITION , 2013, 1311.0329.

[32]  A. Morbidelli,et al.  On the width and shape of gaps in protoplanetary disks , 2006 .

[33]  C. Ormel,et al.  The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks , 2010, 1007.0916.

[34]  Jonathan P. Williams,et al.  Protoplanetary Disks and Their Evolution , 2011, 1103.0556.

[35]  A. Pourmand,et al.  Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo , 2011, Nature.

[36]  Kathryn Volk,et al.  CONSOLIDATING AND CRUSHING EXOPLANETS: DID IT HAPPEN HERE? , 2015, 1502.06558.

[37]  J. Szulágyi,et al.  Meridional circulation of gas into gaps opened by giant planets in three-dimensional low-viscosity disks , 2014, 1401.2925.

[38]  J. Szulágyi,et al.  Planet heating prevents inward migration of planetary cores , 2015, Nature.

[39]  Sean M. Andrews,et al.  PROTOPLANETARY DISK STRUCTURES IN OPHIUCHUS , 2009, 0906.0730.

[40]  D. Ebel,et al.  Hf–W mineral isochron for Ca,Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals , 2008 .

[41]  S. Raymond,et al.  Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact , 2014, Nature.

[42]  J. Cuzzi,et al.  Size-selective Concentration of Chondrules and Other Small Particles in Protoplanetary Nebula Turbulence , 2000, astro-ph/0009210.

[43]  Shigeru Ida,et al.  Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities , 2004, astro-ph/0408019.

[44]  S. Weidenschilling Can Gravitational Instability Form Planetesimals , 1995 .

[45]  E. Asphaug,et al.  Chondrule formation during planetesimal accretion , 2011 .

[46]  Magnetospheric accretion-ejection processes in the classical T Tauri star AA Tauri , 2006, astro-ph/0611787.

[47]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[48]  Willy Benz,et al.  Models of giant planet formation with migration and disc evolution , 2004 .

[49]  X. Bai HALL EFFECT CONTROLLED GAS DYNAMICS IN PROTOPLANETARY DISKS. II. FULL 3D SIMULATIONS TOWARD THE OUTER DISK , 2014, 1409.2511.

[50]  Avi M. Mandell,et al.  Formation of Earth-like Planets During and After Giant Planet Migration , 2007, astro-ph/0701048.

[51]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[52]  A. Johansen,et al.  Prograde rotation of protoplanets by accretion of pebbles in a gaseous environment , 2009, 0910.1524.

[53]  T. Guillot,et al.  Evolution of protoplanetary discs with magnetically driven disc winds (Corrigendum) , 2016, Astronomy & Astrophysics.

[54]  T. Guillot,et al.  A reassessment of the in situ formation of close-in super-Earths , 2015, 1504.03237.

[55]  Alessandro Morbidelli,et al.  Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn , 2015, 1506.03029.

[56]  W. Kley,et al.  Particle dynamics in discs with turbulence generated by the vertical shear instability , 2016, 1607.02322.

[57]  S. Chatterjee,et al.  INSIDE-OUT PLANET FORMATION. III. PLANET–DISK INTERACTION AT THE DEAD ZONE INNER BOUNDARY , 2015, 1508.02791.

[58]  S. Weidenschilling,et al.  Formation of planetesimals in the solar nebula , 1993 .

[59]  P. Bodenheimer,et al.  Orbital migration of the planetary companion of 51 Pegasi to its present location , 1996, Nature.

[60]  Seth Andrew Jacobson,et al.  Lunar and terrestrial planet formation in the Grand Tack scenario , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[61]  Alessandro Morbidelli,et al.  Iron meteorites as remnants of planetesimals formed in the terrestrial planet region , 2006, Nature.

[62]  R. Nelson,et al.  GLOBAL SIMULATIONS OF PROTOPLANETARY DISKS WITH OHMIC RESISTIVITY AND AMBIPOLAR DIFFUSION , 2015, 1501.05431.

[63]  S. Raymond,et al.  GAS GIANT PLANETS AS DYNAMICAL BARRIERS TO INWARD-MIGRATING SUPER-EARTHS , 2015, 1501.06308.

[64]  R. Paul Butler,et al.  A New Planet around an M Dwarf: Revealing a Correlation between Exoplanets and Stellar Mass , 2007, 0707.2409.

[65]  R. L. Akeson,et al.  Observations of T Tauri Disks at Sub-AU Radii: Implications for Magnetospheric Accretion and Planet Formation , 2005, astro-ph/0501308.

[66]  Scott J. Kenyon,et al.  Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion , 1987 .

[67]  A. Johansen,et al.  Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion , 2015, Science Advances.

[68]  A. Morbidelli,et al.  Terrestrial planet formation with strong dynamical friction , 2006 .

[69]  A Long‐Period Jupiter‐Mass Planet Orbiting the Nearby M Dwarf GJ 849 , 2006, astro-ph/0610179.

[70]  Jon M. Jenkins,et al.  ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS , 2011, 1102.0543.

[71]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[72]  Philip J. Armitage,et al.  Dynamics of Protoplanetary Disks , 2010, 1011.1496.

[73]  D. Lynden-Bell,et al.  The Evolution of viscous discs and the origin of the nebular variables. , 1974 .

[74]  A. Youdin,et al.  Forming Planetesimals in Solar and Extrasolar Nebulae , 2009, 0909.2652.

[75]  J. McClintock,et al.  Black Holes in Binary Systems , 1992 .

[76]  L. Rogers MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY , 2014, 1407.4457.

[77]  S. Seager,et al.  Ocean Planet or Thick Atmosphere: On the Mass-Radius Relationship for Solid Exoplanets with Massive Atmospheres , 2007, 0710.4941.

[78]  A. Wolfgang,et al.  HOW ROCKY ARE THEY? THE COMPOSITION DISTRIBUTION OF KEPLER’S SUB-NEPTUNE PLANET CANDIDATES WITHIN 0.15 AU , 2014, 1409.2982.

[79]  G. Laughlin,et al.  The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths , 2012, 1211.1673.

[80]  P. Duffell,et al.  THE MIGRATION OF GAP-OPENING PLANETS IS NOT LOCKED TO VISCOUS DISK EVOLUTION , 2014, 1405.3711.

[81]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[82]  W. Bottke,et al.  Towards initial mass functions for asteroids and Kuiper Belt Objects , 2010, 1004.0270.

[83]  P. Bodenheimer,et al.  FORMATION AND STRUCTURE OF LOW-DENSITY EXO-NEPTUNES , 2011, 1106.2807.

[84]  Ilaria Pascucci,et al.  The Dispersal of Protoplanetary Disks , 2013, 1311.1819.

[85]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[86]  Jeffrey S. Oishi,et al.  Rapid planetesimal formation in turbulent circumstellar disks , 2007, Nature.

[87]  Hans Rickman,et al.  The multifaceted planetesimal formation process , 2014, 1402.1344.

[88]  A. Johansen,et al.  How to form planetesimals from mm-sized chondrules and chondrule aggregates , 2015, 1501.05314.

[89]  N-BODY SIMULATIONS OF PLANETARY ACCRETION AROUND M DWARF STARS , 2009, 0904.4543.

[90]  William R. Ward,et al.  Three-Dimensional Interaction between a Planet and an Isothermal Gaseous Disk. I. Corotation and Lindblad Torques and Planet Migration , 2002 .

[91]  W. Kley,et al.  Vertical shear instability in accretion disc models with radiation transport , 2014, 1409.8429.

[92]  Jack J. Lissauer,et al.  Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core , 2005 .

[93]  Andrew N. Youdin,et al.  Streaming Instabilities in Protoplanetary Disks , 2004, astro-ph/0409263.

[94]  S. Weidenschilling,et al.  Aerodynamics of solid bodies in the solar nebula. , 1977 .

[95]  R. Nelson,et al.  On the formation of hot Neptunes and super-Earths , 2009, 0910.5299.

[96]  Origins of Eccentric Extrasolar Planets: Testing the Planet-Planet Scattering Model , 2007, astro-ph/0703163.

[97]  G. Libourel,et al.  Homogeneous Distribution of 26Al in the Solar System from the Mg Isotopic Composition of Chondrules , 2009, Science.

[98]  Marc J. Kuchner,et al.  A Minimum-Mass Extrasolar Nebula , 2004, astro-ph/0405536.

[99]  G. Laughlin,et al.  Jupiter’s decisive role in the inner Solar System’s early evolution , 2015, Proceedings of the National Academy of Sciences.

[100]  S. Ida,et al.  Growth of a Migrating Protoplanet , 1999 .

[101]  N. Kaib,et al.  Building the terrestrial planets: Constrained accretion in the inner Solar System , 2009, 0905.3750.

[102]  Sergei Nayakshin,et al.  Giant Planet Formation, Evolution, and Internal Structure , 2013, 1311.1142.

[103]  S. Raymond,et al.  The Grand Tack model: a critical review , 2014, Proceedings of the International Astronomical Union.

[104]  Yanqin Wu,et al.  THE 3D FLOW FIELD AROUND AN EMBEDDED PLANET , 2015, 1505.03152.

[105]  John Asher Johnson,et al.  CHARACTERIZING THE COOL KOIs. IV. KEPLER-32 AS A PROTOTYPE FOR THE FORMATION OF COMPACT PLANETARY SYSTEMS THROUGHOUT THE GALAXY , 2012, 1301.0023.

[106]  P. Goldreich,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[107]  D. Fischer,et al.  BUILDING MASSIVE COMPACT PLANETESIMAL DISKS FROM THE ACCRETION OF PEBBLES , 2015, 1507.08215.

[108]  E. Kokubo,et al.  Formation of Protoplanet Systems and Diversity of Planetary Systems , 2002 .

[109]  P. Hassanzadeh,et al.  ZOMBIE VORTEX INSTABILITY. I. A PURELY HYDRODYNAMIC INSTABILITY TO RESURRECT THE DEAD ZONES OF PROTOPLANETARY DISKS , 2014, 1410.8143.

[110]  G. Libourel,et al.  Olivines in Magnesian Porphyritic Chondrules: Mantle Material of Earlier Generations of Differentiated Planetesimals? , 2006 .

[111]  A. Crida,et al.  Stellar irradiated discs and implications on migration of embedded planets - II. Accreting-discs , 2014, 1401.1334.

[112]  C. Baruteau,et al.  A torque formula for non-isothermal Type I planetary migration – II. Effects of diffusion , 2010, 1007.4964.

[113]  A. Johansen,et al.  PARTICLE CLUMPING AND PLANETESIMAL FORMATION DEPEND STRONGLY ON METALLICITY , 2009, 0909.0259.

[114]  S. Raymond,et al.  Hot super-Earths and giant planet cores from different migration histories , 2014, 1407.6011.

[115]  B. Hansen,et al.  TESTING IN SITU ASSEMBLY WITH THE KEPLER PLANET CANDIDATE SAMPLE , 2013, 1301.7431.

[116]  Niraj K. Inamdar,et al.  STEALING THE GAS: GIANT IMPACTS AND THE LARGE DIVERSITY IN EXOPLANET DENSITIES , 2015, 1510.02090.

[117]  Makiko Nagasawa,et al.  The orbital stability of planets trapped in the first-order mean-motion resonances , 2012 .

[118]  T. Guillot,et al.  The radial dependence of pebble accretion rates: A source of diversity in planetary systems I. Analytical formulation , 2016, 1604.01291.

[119]  J. Bally,et al.  Can Photoevaporation Trigger Planetesimal Formation? , 2004, astro-ph/0411647.

[120]  Niraj K. Inamdar,et al.  The formation of super-Earths and mini-Neptunes with giant impacts , 2014, 1412.4440.

[121]  T. Barclay,et al.  FORMATION, TIDAL EVOLUTION, AND HABITABILITY OF THE KEPLER-186 SYSTEM , 2014, 1404.4368.

[122]  Hidekazu Tanaka,et al.  Three-dimensional Interaction between a Planet and an Isothermal Gaseous Disk. II. Eccentricity Waves and Bending Waves , 2004 .

[123]  D. Lin,et al.  Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets , 2004 .

[124]  R. Wieler,et al.  Hf–W chronometry of core formation in planetesimals inferred from weakly irradiated iron meteorites , 2012 .

[125]  Elizabeth A. Lada,et al.  Disk Frequencies and Lifetimes in Young Clusters , 2001, astro-ph/0104347.

[126]  X. Bai TOWARD A GLOBAL EVOLUTIONARY MODEL OF PROTOPLANETARY DISKS , 2016, 1603.00484.

[127]  Н.И. Шакура,et al.  Black Holes in Binary Systems. Observational Appearance , 1973 .

[128]  E. Chiang,et al.  MAKE SUPER-EARTHS, NOT JUPITERS: ACCRETING NEBULAR GAS ONTO SOLID CORES AT 0.1 AU AND BEYOND , 2014, 1409.3578.

[129]  Erik Asphaug,et al.  Origin of the Moon in a giant impact near the end of the Earth's formation , 2001, Nature.

[130]  R. Nelson,et al.  Global models of planetary system formation in radiatively-inefficient protoplanetary discs , 2011, 1112.2997.

[131]  X. Bai WIND-DRIVEN ACCRETION IN PROTOPLANETARY DISKS. II. RADIAL DEPENDENCE AND GLOBAL PICTURE , 2013, 1305.7232.

[132]  Turbulence in Accretion Disks: Vorticity Generation and Angular Momentum Transport via the Global Baroclinic Instability , 2002, astro-ph/0211629.

[133]  M. Livio,et al.  Dead Zones around Young Stellar Objects: FU Orionis Outbursts and Transition Discs , 2012, 1204.2959.

[134]  J. E. Pringle,et al.  Accretion Discs in Astrophysics , 1981 .

[135]  G. Marcy,et al.  THE MASS–RADIUS RELATION FOR 65 EXOPLANETS SMALLER THAN 4 EARTH RADII , 2013, 1312.0936.

[136]  D. Apai,et al.  AN INCREASE IN THE MASS OF PLANETARY SYSTEMS AROUND LOWER-MASS STARS , 2015, 1510.02481.

[137]  S. Ida,et al.  On the water delivery to terrestrial embryos by ice pebble accretion , 2015, 1512.02414.

[138]  C. Dullemond,et al.  A representative particle approach to coagulation and fragmentation of dust aggregates and fluid droplets , 2008, 0807.5052.

[139]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[140]  S. Chatterjee,et al.  INSIDE-OUT PLANET FORMATION , 2013, 1306.0576.

[141]  Austin,et al.  A Decreased Probability of Habitable Planet Formation around Low-Mass Stars , 2007, 0707.1711.

[142]  S. Chatterjee,et al.  VULCAN PLANETS: INSIDE-OUT FORMATION OF THE INNERMOST SUPER-EARTHS , 2014, 1411.2629.

[143]  Seth Andrew Jacobson,et al.  The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores , 2015, 1506.01666.

[144]  Peter Goldreich,et al.  Disk-Satellite Interactions , 1980 .

[145]  C. Dullemond,et al.  Vertical structure models of T Tauri and Herbig Ae/Be disks , 2002, astro-ph/0204281.

[146]  G. Marcy,et al.  A PLATEAU IN THE PLANET POPULATION BELOW TWICE THE SIZE OF EARTH , 2013, 1304.0460.

[147]  John C. Geary,et al.  ARCHITECTURE OF KEPLER'S MULTI-TRANSITING SYSTEMS. II. NEW INVESTIGATIONS WITH TWICE AS MANY CANDIDATES , 2012, The Astrophysical Journal.

[148]  C. Baranec,et al.  AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS , 2015, 1501.06227.

[149]  K. Wada,et al.  Fluffy dust forms icy planetesimals by static compression , 2013, 1307.7984.

[150]  T. Guillot,et al.  On the filtering and processing of dust by planetesimals - I. Derivation of collision probabilities for non-drifting planetesimals , 2014, 1409.7328.

[151]  A. Johansen,et al.  Forming the cores of giant planets from the radial pebble flux in protoplanetary discs , 2014, 1408.6094.

[152]  Brandon C. Johnson,et al.  Impact jetting as the origin of chondrules , 2015, Nature.

[153]  Harold F. Levison,et al.  Contamination of the asteroid belt by primordial trans-Neptunian objects , 2009, Nature.

[154]  K. Nakazawa,et al.  Formation of Giant Planets in Dense Nebulae: Critical Core Mass Revisited , 2001 .

[155]  S. Raymond,et al.  No universal minimum-mass extrasolar nebula: evidence against in situ accretion of systems of hot super-Earths , 2014, 1401.3743.

[156]  F. Masset,et al.  Reversing type II migration: resonance trapping of a lighter giant protoplanet , 2000, astro-ph/0101332.

[157]  J.C.B. Papaloizou,et al.  On the Dynamical Foundations of α Disks , 1999 .

[158]  B. Hansen FORMATION OF THE TERRESTRIAL PLANETS FROM A NARROW ANNULUS , 2009, 0908.0743.

[159]  Jean-Luc Margot,et al.  ARCHITECTURE OF PLANETARY SYSTEMS BASED ON KEPLER DATA: NUMBER OF PLANETS AND COPLANARITY , 2012, 1207.5250.

[160]  Alexander G. G. M. Tielens,et al.  The Physics of Dust Coagulation and the Structure of Dust Aggregates in Space , 1997 .

[161]  R. Nelson,et al.  Constraints on resonant-trapping for two planets embedded in a protoplanetary disc , 2008, 0802.2033.

[162]  D. Lin,et al.  Grain Retention and Formation of Planetesimals near the Snow Line in MRI-driven Turbulent Protoplanetary Disks , 2007, 0706.1272.

[163]  S. Sirono,et al.  PLANETESIMAL FORMATION BY SUBLIMATION , 2011 .

[164]  High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics , 2005, astro-ph/0510284.

[165]  Cambridge,et al.  On the wake generated by a planet in a disc , 2002 .

[166]  Matthew W. Kunz,et al.  Thanatology in protoplanetary discs - The combined influence of Ohmic, Hall, and ambipolar diffusion on dead zones , 2014, 1402.4133.

[167]  P. Armitage,et al.  Magnetically driven accretion in protoplanetary discs , 2015, 1508.00904.

[168]  Migration and the Formation of Systems of Hot Super-Earths and Neptunes , 2006, astro-ph/0609779.

[169]  G. Libourel,et al.  Supporting Online Material for Homogeneous Distribution of 26 Al in the Solar System from the Mg Isotopic Composition of Chondrules , 2009 .

[170]  M. R. Haas,et al.  MASSES, RADII, AND ORBITS OF SMALL KEPLER PLANETS: THE TRANSITION FROM GASEOUS TO ROCKY PLANETS , 2014, 1401.4195.

[171]  K. Walsh,et al.  Is the Grand Tack model compatible with the orbital distribution of main belt asteroids , 2016, 1701.02775.

[172]  Nuno C. Santos,et al.  Extrasolar Planets: Statistical properties of exoplanets , 2007 .

[173]  Michiel Lambrechts,et al.  Rapid growth of gas-giant cores by pebble accretion , 2012, 1205.3030.

[174]  S. Soter Are Planetary Systems Filled to Capacity ? , 2022 .

[175]  C. Dullemond,et al.  Can dust coagulation trigger streaming instability , 2014, 1410.3832.

[176]  S. Ida,et al.  Towards a Deterministic Model of Planetary Formation I: a Desert in the Mass and Semi Major Axis Distributions of Extra Solar Planets , 2022 .

[177]  Hiroshi Kobayashi,et al.  RAPID COAGULATION OF POROUS DUST AGGREGATES OUTSIDE THE SNOW LINE: A PATHWAY TO SUCCESSFUL ICY PLANETESIMAL FORMATION , 2012, 1204.5035.

[178]  A. Johansen,et al.  Fossilized condensation lines in the Solar System protoplanetary disk , 2015, 1511.06556.

[179]  George W. Wetherill,et al.  Formation of the Earth , 1990 .

[180]  Sarah T. Stewart,et al.  COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. I. OUTCOME REGIMES AND SCALING LAWS , 2011, 1106.6084.

[181]  Disk-dispersal and planet-formation timescales , 2008, 0805.0386.

[182]  B. Bitsch,et al.  Orbital evolution of eccentric planets in radiative discs , 2010, 1008.2656.

[183]  J. Blum,et al.  The Growth Mechanisms of Macroscopic Bodies in Protoplanetary Disks , 2008 .

[184]  A. Johansen,et al.  The structure of protoplanetary discs around evolving young stars , 2014, 1411.3255.

[185]  S. Raymond,et al.  THE ASTEROID BELT AS A RELIC FROM A CHAOTIC EARLY SOLAR SYSTEM , 2016, 1609.04970.

[186]  S. Raymond,et al.  Did Jupiter's core form in the innermost parts of the Sun's protoplanetary disc? , 2016, 1602.06573.

[187]  F. Nimmo,et al.  Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets , 2009 .

[188]  C. Baruteau,et al.  A torque formula for non-isothermal type I planetary migration – I. Unsaturated horseshoe drag , 2009, 0909.4552.

[189]  Susanne Pfalzner,et al.  SHORT DISSIPATION TIMES OF PROTO-PLANETARY DISKS: AN ARTIFACT OF SELECTION EFFECTS? , 2014 .

[190]  Jack J. Lissauer,et al.  KEPLER-79'S LOW DENSITY PLANETS , 2013, 1310.2642.

[191]  Alessandro Morbidelli,et al.  Disk Surface Density Transitions as Protoplanet Traps , 2006 .

[192]  A. Johansen,et al.  Dust Evolution and the Formation of Planetesimals , 2016, 1604.02952.

[193]  R. Nelson,et al.  Giant planet formation in radially structured protoplanetary discs , 2016, 1604.05191.

[194]  D. Lin Planetary Formation in Protostellar Disks , 1997 .

[195]  M. Mayor,et al.  Planets around evolved intermediate-mass stars - I. Two substellar companions in the open clusters NGC 2423 and NGC 4349 , 2007, 0706.2174.

[196]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[197]  A. V. Koldoba,et al.  Warps, bending and density waves excited by rotating magnetized stars: results of global 3D MHD simulations , 2012, 1209.1161.

[198]  D. Lin,et al.  TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VI. DYNAMICAL INTERACTION AND COAGULATION OF MULTIPLE ROCKY EMBRYOS AND SUPER-EARTH SYSTEMS AROUND SOLAR-TYPE STARS , 2010, 1006.2584.

[199]  A. Crida,et al.  The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk , 2007, 0704.1210.

[200]  O. Umurhan,et al.  Linear and non-linear evolution of the vertical shear instability in accretion discs , 2012, 1209.2753.

[201]  A. Crida,et al.  Stellar irradiated discs and implications on migration of embedded planets III: viscosity transitions , 2014, 1408.1016.

[202]  A. Coradini,et al.  JOVIAN EARLY BOMBARDMENT: PLANETESIMAL EROSION IN THE INNER ASTEROID BELT , 2012, 1202.4887.

[203]  T. Guillot,et al.  Suppression of type I migration by disk winds , 2015, 1510.06010.

[204]  S. Raymond,et al.  Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous Solar Nebula , 2011, 1107.5656.

[205]  Planets Formed in Habitable Zones of M Dwarf Stars Probably Are Deficient in Volatiles , 2007, astro-ph/0703576.

[206]  Alessandro Morbidelli,et al.  Terrestrial Planet Formation at Home and Abroad , 2013, 1312.1689.

[207]  R. Pudritz,et al.  The origin of planetary system architectures – I. Multiple planet traps in gaseous discs , 2011, 1105.4015.

[208]  A. Crida,et al.  Stellar irradiated discs and implications on migration of embedded planets. I. Equilibrium discs , 2012, 1211.6345.

[209]  R. Hutchison The formation of the Earth , 1974, Nature.